
Stellingen 

Behorende bij het proefschrift "Searching Time-table Networks" van Eduard Tulp 

(1) Een discreet dynamisch netwerk is door zijn fundamentele eigenschappen een 
doelmatige representatie van een dienstregelingsnetwerk. 

(2) Het DYNET algorithme is een correcte en efficiente manier om een discreet 
dynamisch netwerk te doorzoeken. 

(3) SRM is, met name in combinatie met DYNET*, een goede techniek om de 
efficientie van het doorzoeken van een dienstregelingsnetwerk te verhogen. 

(4) Een reizigersinformatiesysteem voor dienstregelingsgestuurd vervoer moet 
actief gedrag vertonen. 

(5) Door een gebrek aan goede informatie wordt het openbaar vervoer slecht benut. 
Het gebruik van goede reizigersinformatiesystemen zal leiden tot eenbewustere 
keuze van vervoermiddel, en een verhoogd gebruik van het openbaar vervoer. 

(6) Het gebruik van een reizigersinformatiesysteem als stuurmiddel mag niet leiden 
tot een vermindering van de kwaliteit van de informatie. 

(7) De basis van dynamische reizigersinformatie is niet de actuele situatie, maar een 
voorspelling van de situatie voor de komende uren. 

(8) Indien bij een automatiseringsproject "de gebruiker centraal wordt gesteld", dan 
mag dit niet betekenen dat de specificatie van het project aan de gebruiker 
wordt overgelaten. 



(9) Hoe gebruikersvriendelijker een programma is, des te slechter wordt de 
handleiding gelezen. 

(10) Om de Nederlandse taal te moderniseren, verdient het aanbeveling om de 
uitdrukking "Loopt als een trein" ter vervangen door "Loopt als een Hoge 
Snelheids Trein (HST)". 

(11) De werken van Bach worden, ondanks waarschuwingen van Mozart, in een te 
hoog tempo uitgevoerd. Waarschijnlijk is dit te wijten aan het feit dat veel 
musici het alla breve negeren, en de mogelijkheden van klassieke instrumenten 
overschatten. 

(12) In de hedendaagse muziek worden musici te veel beoordeeld op de beheersing 
van de techniek, en te weinig op het vermogen om de emotie van de muziek 
over te brengen. 

(13) Net zoals bij kunstmatige inseminatie, is bij kunstmatige intelligentie de 
natuurlijke variant veel opwindender. 
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1. Introduction 

Searching is one of the fundamental areas of research both in Operations 
Research and in Artificial Intelligence. However ingenious a representation for a 
problem may be, usually some and sometimes a great deal of search is still required 
to find solutions to the problem. Early in the history of AI (see for example [Ni, 
1971]), search problems constituted a major part of the interests of AI researchers. 
More recently, search has lost some of its favour, probably for two reasons. First, fast 
and sometimes optimal algorithms have been developed for many areas. When no 
such algorithms were found, it was either because the area had not been considered, 
or because no such algorithms were or could be found (for example, the optimal 
algorithms were slow). Second, some general search techniques, as implemented for 
example in expert systems shells, have been viewed as adequate. 

In Operations Research, in the sixties and early seventies much attention was 
paid to the efficiency and memory requirements of search algorithms (see, for 
instance, [Po, 1960], [Gi, 1973], [Pa, 1974]). Due to the increase in computational 
power (in terms of speed and memory size) in the following years, the importance of 
these topics diminished. However, since the advent of relatively small and slow 
micro computers, again most work in the area of search algorithms concentrates on 
optimizing implementations of existing algorithms (see, for instance [Di, 1979], [De, 
1979], [G1, 1984], [Pa, 1984], [Vu, 1988]). 

We became interested in searching railway service networks, i.e. typically 
finding optimal train connections from railway station s to station t, leaving at or 

after some start time Tstart. An optimal solution makes us arrive at our destination as 

early as possible (departing after or at our planned earliest departure time Tstart), 

and given this earliest arrival time, will allow us to leave as late as possible. Practice 
shows that people often have great difficulty planning a journey from one station to 
another using conventional railway guides. When the distance between the two 
stations is long and the journey consists of several stages, planning a journey requires 
searching multiple time-tables in parallel. Once a route is found, usually little 
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attempt is made to improve the found solution or to find a better one at a different 
time. 

Previous attempts at searching for a quickest route in a public transportation 
network were made for planning purposes (see for instance [Cl, 1972], [Ga, 1984]). 
Never before had a system been designed to give specific information about 
travelling possibilities in an existing transportation network. When a system is used 
for capacity planning, or in passenger flow models, an approximation of the (mean) 
travel time is sufficient. However, when the goal is to give specific travel 
information, a much higher level of detail is necessary. When searching for exact 
travelling possibilities, the exact times of departure and arrival must be used and the 
correct connectional margin must be observed (a connectional margin is the time 
needed to change trains). This high level of detail requires much computer storage 
and power, and may have discouraged previous attempts. In addition, in the past, 
computers with sufficient capacity may have been too expensive for these customer 
service applications. The present availability of relatively cheap micro computers 
with sufficient capacity, and the increase in importance of customer oriented 
applications, have made the development of a travel information system possible. 

We have found that using a conventional graph representation of a railway 
service network is not satisfactory. To represent such a network adequately we have 
developed the concepts of a discrete network and of a discrete dynamic network. In 
a discrete network there are only finite, discrete, predetermined possibilities for 
moving from one vertex to another. Rather than representing the discrete nature of 
the connections by a function giving the (varying) travel time and wait time of a 
connection (see [Co, 1966]), the connections themselves are made discrete. In a 
discrete dynamic network, in addition, visiting a vertex has a cost (possibly zero), 
which may depend both on the past and future route of the path through the vertex. 
Furthermore we introduce dynamic networks, which lack the discreteness of 
connections, but in which visiting a vertex has a cost. 

We describe search algorithms for finding optimal paths in discrete, discrete 
dynamic and dynamic networks. We show that in a discrete and in a discrete dynamic 
network, due to the discrete nature of the connections, the definition of an optimal 
path must be adapted. In order to find such an optimal path, with Dijkstra's 
algorithm ([Di, 1959]) in mind, we have developed a two-pass algorithm. Due to the 
varying visiting costs in a discrete dynamic and in a dynamic network, the Markov 
independence (see, for instance [Hi, 1986] or [Wi, 1984]) of optimal solutions is no 
longer true. Therefore none of the traditional shortest path algorithms could be used 
(for an overview of these algorithms see for instance [De, 1984], [Dr, 1969], [Go, 

2 

1976], [Po, 1960], [VI, 1978]). We have adapted the two-pass algorithm for searching 
a discrete network to handle discrete dynamic networks. 

The algorithm for searching discrete dynamic networks has been implemented 
in a working system (TRAINS) which searches the entire Dutch railway service 
network. TRAINS is in current use at the Dutch railway company NS (Nederlandse 
Spoorwegen) and was recently introduced to the general public. Various AI 
techniques (symmetries, abstraction spaces, distance estimates, etc.) are used to 
improve the performance of TRAINS. 

Although the optimal or quickest solution is thoroughly defined, it is far less 
clear what is the best answer to a user's question. In practice, it turns out that users 
usually overspecify their question and that this question is seldomly definite. There 
are many factors which determine the 'best' answer, and most users cannot even 
make all of these factors explicit. In the domain of travel by train, it is known that the 
number of train changes is important, but there may be additional factors 
contributing to the best answer. Furthermore, these factors may differ from case to 
case. Therefore, it is not possible to define the best answer in terms of goals and 
constraints. In order to find the best answer we cannot just have chosen to use such 
techniques as multiple-objective shortest path techniques (see for instance [Wh, 
1982], [Wa, 1987]), or techniques to find suboptimal paths for each objective (see for 
instance [Ka, 1982], [Pe, 1986], [Sh, 1976], [Sh, 1979], [Ye, 1971]). Instead, we search 
for a number of optimal solutions, and suboptimal solutions with fewer train 
changes, and use a general "common sense" user model to select all relevant 
solutions for a user. The user decides which solution is best for her. 

We now give a short overview of the thesis. 

In chapter 2, after a quick introduction to graph theory, we show why a 
conventional graph is not well suited to represent a network of railway services. We 
introduce a discrete network which can represent a railway service network 
adequately by its discrete connections. 

In order to find a basis for a search algorithm for discrete networks, in chapter 
3 we review graph search techniques. 

With Dijkstra's graph search algorithm as a basis, in chapter 4 we present a 
search algorithm for discrete networks. 

In chapter 5 we introduce visiting costs to discrete networks. The result is a 
discrete dynamic network in which the visiting cost for a specific vertex, incurred by 
the incoming and outgoing edge, is given by a connection function. 
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Using the algorithm for searching a discrete network as a basis, we present an 
algorithm for searching a discrete dynamic network in chapter 6. 

Visiting costs are not restricted to discrete networks. They may also occur in 
ordinary (weighted) graphs. In order to represent visiting costs in a weighted graph 
adequately, in chapter 7 we propose a dynamic network. We also give a search 
algorithm for dynamic networks. 

In order to increase search efficiency we have developed the Space Reduction 
Method, which is presented in chapter 8. In SRM first solutions in a simpler search 
space, called the abstraction space, are considered in order to cut parts of the entire 
search space. We show how SRM can be applied to searching a discrete dynamic 
network. 

In chapter 9 we describe how heuristics can be used to further improve the 
efficiency of search algorithms. We describe how the results from SRM can be used 
in an A* type of extension to the algorithm for searching discrete dynamic networks. 

An excellent way to decrease the amount of search necessary to find a solution, 
is to make sure that the network that is being searched is a small as possible. In 
chapter 10 we describe how some vertices can be removed from the network when 
they are neither the source, nor the goal vertex. We show how the algorithm for 
searching discrete dynamic networks can be adapted to deal with these 'hidden' 
vertices. 

In any practical situation, people often want not only the quickest route, but also 
routes with as few train changes as possible. In chapter 11 we describe how the 
quickest route can be optimized for train changes, and how some (suboptimal) 
longer routes with fewer train changes can be found. 

In chapter 12 we look at some implementation issues, such as storage 
techniques and efficient implementation of the search algorithms. 

Most techniques described in this thesis have been implemented in the 
TRAINS system, which is introduced in chapter 13. TRAINS is being used at NS 
information centers and was recently released to the general public as an electronic 
alternative to the conventional (paper) time-tables. TRAINS exhibits active 
behaviour. We describe how answering a user's request, the system will not only 
present the optimal solution, but also other solutions which may be of interest to the 
user. 

In chapter 14 we give some figures about TRAINS, the networks it searches, its 
performance, and some examples of questions and the solutions TRAINS finds. 
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In chapter 15 we describe how TRAINS was introduced to its users, how it was 
adapted to their wishes, and how it was adapted for public use and finally released. 
We also describe some of the effects the TRAINS system and its release have had on 
the NS organization and how it may very well become the basis for future NS 
time-table information systems. 

Recently, the TRAINS system was extended and other forms of public 
transportation were added. In order to ensure high quality information we had to 
adapt the representation of transportation services and extend the active 

component. In chapter 16 we describe these further developments. 
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2. Discrete Networks 

2.1. A quick introduction to graph theory 

First we shall give a quick introduction to graph theory. We shall restrict 
ourselves to those topics which are necessary for a good understanding of the 
theoretical issues to be discussed. For a more lengthy and thorough introduction to 
graph theory and graph algorithms, we would like to refer to [Ev, 1979]. 

2.1.1. A weighted non-directed graph 

A graph G = (V, E) is a structure which consists of a set of vertices V = 
{v0, v1,... } and a set of edges E = {e0, 	each edge e is incident to the elements 

of an unordered pair of vertices {u, v} which are not necessarily distinct. These two 
vertices u and v are called the endpoints of the edge e. If the endpoints of an edge are 
not distinct, then the edge is called a self loop. Edges which have the same pair of 

endpoints are called parallel. In a finite graph both V and E are finite. In a 
non-directed graph the endpoints of an edge are unordered. Apath is a sequence of 

edges e0, el,..., en such that: 

(1) ei and e1+1 have a common endpoint, 0 i <n; 

(2) If ei  is not a self loop, then it shares one of its endpoints with ei-i and the other 

with ei+1  if it is not the first edge e0 or the last edge en. 

In a weighted graph each edge e is assigned a length 1(e). The length 1(P) of a 

path P = e0, el,..., en  is defined as: 

1(P) = E 1(e i) 
i=0 

A path is called simple if no vertex appears on it more than once. A graph 
(V, E) is called connected if for every two vertices u and v, with u, v E V, there exists 

a path whose start vertex is u and whose end vertex is v. A circuit is a path whose start 
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Fig. 2.4. 

Utg 

19 

Hlm 15 

29 

Ledn Ledn 

Fig. 2.3. 

and end vertices are the same. A connected graph which has no circuits is called a 
tree. 

For an example of a weighted graph let us consider fig. 2.1, consisting of the set 
of vertices {A, B, C, D, E, F } and the set of edges {e0, 	e8  }. Edges e4 and es are 
parallel. Edge e8  is a self loop. The length of the simple path e0, e3, e7 is 2 + 9 + 6 = 
17. The path e0, el, e2, e7, e6, e4  is a (simple) circuit. The graph in fig. 2.2 is a tree. 

B 	e1 

8 

Fig. 2.1. A weighted non-directed graph 
	

Fig. 2.2. A tree 

2.1.2. A weighted directed graph 

In a directed graph the endpoints of an edge are specifically ordered. The first 
endpoint of the edge is called the start vertex and the second the end vertex. The edge 
is said to be directed from its start vertex to its end vertex. Edges with the same start 
vertex and the same end vertex are called parallel, and if u =/= v and e1 : u v and 
e2 v u then e1  and e2  are antiparallel. 

A directed path is a sequence of edges e0,..., e0 such that the end vertex of ei 
is the start vertex of ei+1, 0 i <n. The length of a directed path and a simple 
directed path are defined similarly as in the undirected case. A directed graph 
(V, E) is called strongly connected if for every two vertices u and v, with u and 
v E V , there exists a directed path from u to v; a directed path whose start vertex is 
u and whose end vertex is v. A weighted, directed, strongly connected graph is called 
a network. 

2.2. Representing a railway network by a graph 

A (physical) railway network can be represented by a weighted, non-directed, 
finite graph. The railway stations are represented by the vertices of the graph, the set 
V, and the connecting railroads by the edges, the set E. An edge e connects the 
vertices u and v, if and only if there exists a railroad connecting the stations 
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represented by these vertices. The length of an edge e, l(e), is defined as the distance 
(in km, say) separating the stations connected by e. The length of a path in our 
railway network is the total distance covered by that path. For illustratory purposes, 
we consider a graph representing a small part of the Dutch railway network 
(simplified and modified); see fig. 2.3. 

The vertices of the graph represent the stations (we use the official NS names 
and abbreviations): Amsterdam Central Station (Asd), Amsterdam Sloterdijk 
(Ass), Haarlem (Hlm), Leiden (Ledn), Schiphol (Shl), Uitgeest (Utg) and Zaandam 
(Zd). The edges represent the rail sections Utg - Hlm, Utg - Zd, Hlm - Ledn, Hlm -
Ass, Zd - Ass, Ass - Asd, Ass - Shl and Shl - Ledn. The lengths of the edges are the 
lengths of these sections as published in the NS distance tables for tariff calculation. 
If we consider the path Utg - Hlm - Ass - Shl - Ledn, then the length of this path is 78 
km. 

2.3. Representing a railway service network by a graph 

A network of railway services can be represented by a weighted directed graph. 
Again the stations are represented by the vertices of the graph. An edge e directed 
from the start vertex u to the end vertex v represents a train running from the station 
represented by u (say A) to the one represented by v (say B). The length of an edge 
is the time this train takes to travel from A to B. Let us consider an example with 

1 	Sony about Amsterdam Sloterdijk. 
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Ass 
Shl 

Ledn 

120 
7:40 
7:55 

140 
7:55 
8:05 

150 

8:15 
8:30 

Ledn 

Fig. 2.5. 

three stations (Ass, Shl and Ledn) and three trains: two from Ass to Shl (represented 
by the edges e120 and e140) and one from Shl to Ledn (represented by the edge e150). 

Station 
Amsterdam Sloterdijk 
Schiphol 
Leiden 

The graph representing this network is shown in fig. 2.4. We consider the path 
Ass - Shl - Ledn with edges e140 and elm, representing a trip from Amsterdam 
Sloterdijk to Leiden by trains 140 and 150, changing at Schiphol. The length of this 
path, as defined above, would be 10 + 15 = 25 minutes. However, this is not the 
length of our trip, but the actual time spent in trains! The trip itself took 35 minutes, 
due to a 10 minute wait at Shl. This waiting time is caused by the discreteness of train 
connections: trains do not depart every instant like an escalator does. Trains have 
specific, discrete times of departure and arrival. Time is lost due to gaps between 
arrival and the departure of a connection. 

2.4. Representing waiting time 

Since we would like the length of a path to be the same as the duration of the 
trip represented by the path, we have to find a way to include the waiting time in the 
length of the path. Some authors suggest to include a mean waiting time in the travel 
time (see for instance [Cl, 1972]). If a train goes, say every 10 minutes, then a 5 
minute waiting time is added to the travel time. But even if the waiting time is chosen 
conservatively, this method just gives some estimate of how long a trip may be. It 
does not tell exactly when to leave, nor at what exact time we shall arrive. This is 
acceptable in stochastic applications (such as capacity planning or passenger flow 
models), where a mean travel time is sufficient; however, when the goal is to provide 
specific information about travelling possibilities, this method is not suitable. 

Another way to represent the waiting time would be to create two vertices for 
each station. One vertex for arriving trains and one for departing trains. The two 
vertices are connected by an edge representing the waiting time. But then, what 
should be the length of this waiting edge? We cannot decide beforehand because the 
waiting time is dependent on the route: dependent on with which train we arrived 
and with which train we shall leave again. Let us consider our example (see fig. 2.5). 

How long should we make the edge connecting Shlin  and Shlout? If we would 
have arrived by train 120, the waiting time would be 20 minutes, if we would have 
arrived by train 140, 10 minutes. We can solve this problem by adding one vertex per  

arriving train and one vertex per departing train. A vertex representing an arriving 
train at a station is connected to a vertex representing a departing train from that 
station by a waiting edge, if there is sufficient connection time. The length of the 
waiting edge corresponds to the appropriate waiting time. Our example would then 
look like fig. 2.6. 	 ASSout120 

Fig. 2.6. 

The above representation would lead to a very large graph in any practical 
situation. For instance, consider the Dutch railway service network, consisting of 
some 370 stations and almost 50 000 departures from these stations per day. The 
resulting graph would have 100 000 vertices (two vertices per train, one per 
departure of a train and one per arrival), and in the very best case 100 000 edges: 
50 000 travelling edges representing journeys, and 50 000 waiting edges in the 
(improbable) case that we need only one waiting edge to connect an arriving train to 
the unique connecting departing train, clearly an unacceptable over-simplification. 
In the practical case of the Dutch railway service network, on average each station 
has about 140 arrivals and 140 departures. On average, each arriving train has a 
connection to 70 departing trains So, per arrival we would need on average 70 extra 
edges representing a connection, giving 50 000 * 70 = 3 500 000 waiting edges in 
addition to the 50 000 travelling edges. Therefore, to represent the Dutch railway 
services network in this way, we need some 100 000 vertices and some 3 550 000 
edges, while the network ignoring the connections could be represented by some 370 
vertices and 50 000 edges. 

2.5. A discrete network 

To represent discrete connections in an efficient, adequate and more natural 
way, we propose a discrete network. In a discrete network the discreteness of the 
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connections is reflected in the properties of the edges. A discrete network consists of 
a finite, weighted, directed graph G = E). Moreover, with each edge e from E we 
associate two values: 

(1) a start value start(e); 
(2) an end value end(e), satisfying start(e) < end(e). 

The length of an edge e is defined as: 

1(e) = end(e) — start(e) . 

In the representation of a railway service network, each train departing from a 
station is represented by one edge. The start and end values of the edge represent the 
departure and arrival times of the train represented by the edge. The length of the 
edge represents the travel time of this train. In our example start(e150) is 8:15, 
end(eis0) is 8:30, and l(e150) is 15 (see fig. 2.7.). 

A path P in a discrete network is defined as a sequence of edges: 

P = e0, 	en  

While the length of a path P, l(P), is defined as: 

l(P) = end(P) — start(P). 

In the representation of a railway service network, the start and end value of a 
path are respectively the time of departure and the time of arrival, and the length of 
a path the duration of the trip. If we look again at our example (fig. 2.7), the length 
of the path elm, elm becomes 8:30 - 7:55 = 35 minutes. Indeed the travel time. If we 
consider the path e120, e150, the length becomes 8:30 - 7:40 = 50 minutes. 

A connection along the path is a pair of edges {ek, ek+1 }, such that the end 
vertex of ek is the start vertex of ek+1. In a railway service network a connection is a 
pair of connecting trains (possibly with a train change). The cost of a connection 
along the path P, COST, is defined as: 

COST(ek, ek+1) = start(ek+i) — end(ek), with 0 k < n. 

In the representation of a railway service network, the COST of a connection 
represents the time one has to wait for the next train at a station. 

such that 

(1) The end vertex of ek is the start vertex of ek+1, 0 5- k < n; 
(2) end(ek) start(ek+1) , 0 < k < n 

The start and end of a path P are defined as: 

start(P) = start(e0) ; end(P) = end(en). 

Fig. 2.7. 
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3. Searching A Graph 

3.1. Shortest path algorithms 

For finding the best railway connections between two stations we need an 
algorithm which searches for the shortest path in the graph representing the railway 
service network. We distinguish two basic types of graph search algorithms: 

(1) Matrix algorithms. 
(2) Tree building algorithms. 

3.1.1. Matrix algorithms: Floyd's algorithm 

Matrix algorithms (see for instance [Da, 1966], [Fl, 1962], [Hu, 1967], [Ye, 
1968]) compute the shortests distances and paths between all vertices of the graph 
simultaneously by manipulating a I VI * I VI matrix. Since we need the shortest path 
between two specific vertices only, the source vertex and the goal vertex, these 
algorithms are inefficient for our purpose. However there is one interesting property 
of the matrix algorithm by Floyd [Fl, 1962]: it allows negative length edges and even 
negative length circuits in a directed, weighted graph. We shall describe Floyd's 
algorithm. 

Let G be a finite directed graph (l; E). V = {1, 2,.., n }. Each edge e from E has 
a length 1(e), which may be negative. Define an n by n matrix d0  in which: 

j) = 1(e), if e: i -> j, e EE 

and 

d0(i, j) = inf, otherwise. 

Floyd's algorithm is as follows: 
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* Type (1) vertices 
o Type (2) vertices 
• Type (3) vertices 

(1) k 4-  1 . 

(2) For every 1 5.. i, j ...5.. n compute Ok(i, j) 4.- min  { ok-1(i, j),  d1-1(i,  k) + ok-i (lc, j)}  . 

(3) If k = n then stop. 
Else k <- k + 1 and go to step (2). 

It can be shown that after termination, (3°(i, j) contains the length of the shortest 
path from i to j. See for instance, [St, 1974] or [Ev, 1979]. In the kth  step of Floyd's 
algorithm the matrix contains all shortest paths, allowing to use only a subset of 

vertices 1 to k as intermediate vertices. The basic operation is to check in the kth  step 
whether a route can be improved by using a route already found (which was found 
allowing only vertices 1 through k-1 as an intermediate vertex), and going through 
vertex k (thus a route allowing vertices 1 through k as intermediate vertices). Notice 
that during each phase of the algorithm all matrix entries are tried to construct better 
paths. This means that even non-existent connections (characterized by a matrix 
entry containing 00) are tried. At all times, only (the length of) the best known path 
between each possible pair of vertices i and j is stored in the matrix entry O(i, j). 

3.1.2. Tree building algorithms 

Tree building algorithms, also known as labeling algorithms, build a tree of 
paths from the source to the other vertices of the graph. Generally, the shortest paths 
from one vertex to all other vertices are found. In these algorithms, the distance of 
the currently best know path from the starting vertex to a vertex v is remembered by 
its label A(v). All tree building algorithms use the same principle: first they initialize 
all distances (A's) to infinity, during the remaining of the searching process the 
characteristic operation is: 

A(v) = Min(A(v) , A(u) + 1(eu•v)) 

This operation checks whether the currently known shortest distance between the 
source vertex and vertex v (which is the label of v, A(v)), can be reduced by adding the 
edge e.,,, with length /(e.,), to the shortest path tree. It is checked whether the 
current distance to v can be reduced by using a path via vertex u. Notice that only 
existing connections are tried (which was not the case in Floyd's matrix algorithm). 

Within the tree building algorithms two types of algorithms are distinguished: 

(1) Label correcting algorithms; 
(2) Label setting algorithms. 
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During the search process of a tree building algorithms three types of vertices 
can be distinguished, shown in figure 3.1. 

(1) vertices that are part of the current shortest path tree; 

(2) vertices that are adjacent to the vertices in the shortest path tree; 

(3) other vertices. 

Fig. 3.1. 

The vertices adjacent to the vertices in the shortest path tree are also called 

loose-end vertices, as they are adjacent to the loose ends of the tree branches. 

3.1.2.1. Label correcting algorithms: Moore's algorithm 

A prominent example of a label correcting algorithm is an algorithm known as 
Moore's algorithm [Mo, 1957], similar algorithms were published by Ford [Fo, 1956] 
and Bellman [Be, 1958]. In his paper Moore describes four algorithms, we shall limit 
ourselves to the most important one. The others are, in fact, derived special cases. 

Consider a finite directed graph (K E). Each edge e from E has a length 1(e) 

which may be negative. The two special vertices s and t of the graph are the starting 

and terminating vertices. We want to find a shortest directed path from s to t, where 

the length of a path is the sum of the lengths of its edges. The label A(v) of a vertex v 
was explained above. Here is Moore's algorithm: 

(1) A(s) <- 0 and for all y E V, v s, A(v) 4- 00 

(2) T <- { s} . 
(3) If T is empty, stop. 
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(4) Let u be a vertex in T. 
(5) For every edge e : u v, 

if A(v) > A(u) + l(e) 
then A(v) A(u) + 1(e) and T T + v} . 

(6)T4-T— {u} and go to step (3). 

It can be shown that after termination in step (3), the label of each vertex u, 
2(u), contains the length of the shortest path from the source vertex s to the vertex u, 
see for example [St, 1974]. In Moore's algorithm a vertex can become part of the 
shortest path tree (in step (6)) and be put again in the loose-end table (the collection 
T, in step (5)) multiple times, which may be inefficient. Each time the vertex 
becomes part of the shortest path tree its label is corrected. Hence the term label 
correcting algorithm. At all times per vertex only the best known path is 
remembered by its label A. Note that Moore's algorithm does not stop until the 
entire graph has been searched and the distances of the shortest paths from the 
source vertex to all other vertices are known. 

3.1.2.2. Label setting algorithms: Dijkstra's algorithm 

A prominent example of a label setting algorithm is an algorithm known as 
Dijkstra's algorithm [Di, 1959] Similar algorithms were published by Whiting and 
Hillier [Wh, 1960]. We shall describe Dijkstra's algorithm, which is often considered 
to be the best algorithm to search a finite, directed graph whose edges have 
non-negative lengths. 

Consider a finite directed graph (VE), where V is the set of vertices and E the 
set of directed edges joining two vertices from V. Each edge e from E has a length 
l(e) 0. The two special vertices s and t of the graph are the starting and terminating 
vertices. We want to find a shortest directed path from s to t, where the length of a 
path is the sum of the lengths of its edges. The label 2(v) of a vertex v was explained 
above. 

(1) 2(s) 4-- 0 and for all v E V, v s, A(v) oo . 
(2) T4- V. 
(3) Let u be a vertex in T for which 2(u) is minimum 
(4) If u = t, stop. 
(5) For every edge e : u v, 

if v E T and 2(v) > A.(u) + 1(e) 
then 2(v) <- 2(u) + l(e) . 

(6) T T — { u} and go to step (3). 
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Dijkstra's algorithm can be shown to find an optimal path (when available) from 
s to t, see for example [Ev, 1979]. Each vertex in the network is labeled with its 
distance 2 from the source vertex along the best path that is known at the time of 
labeling. When the label of a vertex is made permanent in step (3), we have found a 
(there may be ties) shortest route (from s) to that vertex. The difference with 
Moore's algorithm lies in the selection of the vertex to be examined from the 
loose-end vertices (step (4) in Moore's algorithm and step (3) in Dijkstra's 
algorithm) and in the fact that only the vertices which are not part of the shortest 
path tree (the collection T) are considered for relabeling in step (5). Step (5) is 
called the examination of a vertex u. 

Note that in this (original) definition of Dijkstra's algorithm the type 2 vertices 
(vertices adjacent to the vertices in the shortest path tree) are not distinguished from 
the type 3 vertices (vertices not part of, and not adjacent to, the shortest path tree). 
There is only a distinction between permanently labeled vertices (vertices that are 
part of the shortest path tree) and tentatively labeled vertices (the collection T). In 
Dijkstra's algorithm, in step (3) the vertex with the smallest distance from the source 
(i.e. the smallest label) and which has not been made part of the shortest path tree is 
chosen. All tentatively labeled vertices are considered. There is no distinction 
between vertices labeled with infinity (type 3 vertices) and vertices with a label 
unequal infinity (type 2 vertices). By choosing the vertex with the smallest label, no 
shorter path to this vertex can possibly be found later on. When a vertex becomes 
part of the shortest path tree (in step (6)), its label 2 is made permanent. It is set and 
cannot change anymore. Hence the term label setting algorithm. Also, a vertex is 
examined only once. That is why these algorithms are also called once-through 
algorithms (the term was suggested by Murchland [Mu, 1967]). Furthermore, 
Dijkstra's algorithm stops as soon as the length of the shortest path from the source 
to the goal vertex is known. This may mean that for other vertices than the goal 
vertex, the length of the shortest path from the source has not yet been determined. 
By changing the stopping criterion in step (4) to a test whether T is empty, the 
algorithm will not stop until all shortest paths have been found. Clearly these 
properties make Dijkstra's algorithm, and label setting algorithms in general, more 
efficient than label correcting algorithms. Note that in a label setting algorithm also, 
at all times, per vertex only (the length of) the best known path is remembered by its 
label A. 

3.1.2.3. An improvement of Dijkstra's algorithm 

As mentioned above, in the original definition of Dijkstra's algorithm all 
tentatively labeled vertices are considered for examination in step (3). No distinction 
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is made between vertices labeled with infinity (type 3 vertices) and vertices with a 
label unequal infinity (type 2 vertices), as with Moore's algorithm. We can easily 
incorporate such a distinction in Dijkstra's algorithm by the introduction of a 
loose-end table: a collection F which we prefer to call the frontier. Dijkstra's 
algorithm becomes: 

(1) A(s) 4-  0 and for all I/ E V, v # s, A(v) 
(2) T <- V , F 4- {s} . 
(3) Let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path 

could be found. 
(4) If u = t, stop, an optimal path is found. 
(5) For every edge e : u -, v, 

if v E T and A(v) > A(u) + 1(e) 
then A(v) <- A(u) + 1(e) and F .1- F + {v} . 

(6)Ti-T—{u},F+-F—{u} and go to step (3). 

As before, the collection V contains all vertices which have not been made 
permanent yet. The collection F contains all vertices which have not been made 
permanent yet, but which have been visited at least once. Selecting the vertex to be 
examined, it makes no sense to consider vertices which have never been visited yet 
and which are still labeled with infinity For when we make a vertex permanent, its 
label is the length of the shortest path from the source to this vertex, and in order to 
know that distance, we must have visited this vertex at least once. Considering only 
the vertices in the frontier makes the algorithm more efficient, especially in the early 
stages of the searching process when most vertices have never been visited yet and 
are still labeled with infinity. 

3.2. Remembering the route of the shortest path 

The algorithms as discussed above determine the length of the shortest path 
between two (or more) vertices. However, usually we are not only interested in the 
length of the shortest path, but also in the route of the shortest path. In order to 
obtain the route of the shortest path in the algorithms discussed above, apart from a 
label, a vertex is given a backvertex. The backvertex is set to the vertex from which 
the current label was set (the vertex u in step (5) of the description of Dijkstra's 
algorithm) By traversing the backvertices the route of the shortest path can be 
constructed. 
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3.3. The dynamic programming principle 

The property that characterizes all shortest path algorithms is that at all times 
per vertex only the best known path is remembered. The foundation of this property 
is that when we have found a shortest route from s to t, if this shortest route passes 

through vertex b, then a shortest route from s to b, a partial path, is part of the 
shortest route from s to t (the complete path). There may be several shortest paths; 
this slight complication will be ignored here. If we remember the best known path 
per vertex, we can never miss an optimal path in case this vertex turns out to be on 
an optimal path. Therefore, for each vertex only one path, the best partial path, 
needs to be remembered. This result is known as the Markovian property, the 

principle of optimality for dynamic programming (see, for instance [Hi, 1986]) and as 
the dynamic programming principle (see for instance [Wi, 1984]). For problems in 
general, the Markovian property means that knowledge of the current state conveys 
all the information about its previous behaviour necessary for determining the 
optimal policy henceforth. Or more theoretically: the conditional probability of any 
future "event", given any past "event" and the present state, is independent of the past 
event and depends upon only the present state of the process. 

3.4. Searching bidirectionally 

When only the shortest path between two vertices is needed, it is appealing to 
start searching from both the source vertex and the goal vertex simultaneously. 
According to Murchland [Mu, 1967], when using a bidirectional algorithm, the 
savings in computation time over the normal, unidirectional algorithm is about 50 
percent. A modified label setting algorithm can be used to construct trees from both 
the source and the goal, adding branches to the two trees in an alternating way. 
Whenever the two trees touch we have found a path from the source to the goal. The 
important issue is how to decide when the algorithm may be terminated, preserving 
optimality of solution. We cannot stop after the first time we have found a complete 
path. The stopping criterion was given by Nicholson [Ni, 1966]. 

Suppose that the last vertex we have made permanent in the tree built from the 
source vertex is us, and that ug  is the last vertex made permanent in the tree built 
from the goal vertex. Then we know that all vertices adjacent to vertices of the 
shortest path tree from the source vertex have been visited, and moreover that they 
have a distance from the source greater than or equal to A(us). Similarly, all vertices 
adjacent to vertices of the shortest path tree from the goal vertex have been visited 
and they have a distance from the goal greater than or equal to A(ug). So, every path 
from the source to the goal vertex using a vertex which is not part of either shortest 
path tree, must have a length of at least A (u s) + Mug). It is easily seen that if the 
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length of a shortest path from the source to the goal vertex which has actually been 
found (this path must use only vertices which are part of at least one of the shortest 
path trees, otherwise we would not have found it yet) is smaller than or equal to 
).(us) + A(ug), that this shortest path is an optimal path. For more discussion of 
bidirectional search see [Lu, 1989] and [Po, 1971]. Searching Discrete Networks 
3.5. Conclusion 

Since we need a graph search algorithm giving a shortest path between two 
vertices only, a matrix algorithm which searches for shortest paths between all 
vertices simultaneously, is inefficient for our purpose. Of the tree building 
algorithms, which search for the shortest path from one vertex to all other vertices, 
the label setting type is the most efficient one. So for our application, the obvious 
choice is to use (the improved) Dijkstra's algorithm as described above. We shall not 
use a bidirectional version for reasons which will become clear later on. 

4.1. Adapting Dijkstra's algorithm to discrete networks 

Now that we have decided which graph search algorithm is best suited for our 
purpose, Dijkstra's algorithm, we adapt it to discrete networks. Ina discrete network 
each edge has a discrete start and end value, so in Dijkstra's algorithm we have to 
change the labeling step (step (5)). In Dijkstra's algorithm we add the length of an 
edge to the label of the start vertex of this edge and compare it to the label of the end 
vertex. In a discrete network we compare the end value of an edge to the label of its 
end vertex. Furthermore, before trying an edge, we must check whether its start 
value is greater than or equal to the label of the start vertex (the condition of a 
discrete path) Finally we must also give a desired start value of the path (which 
would correspond to the desired time of departure in a railway service network 
representation). Here is Dijkstra's algorithm for a discrete network (we use our 
improved version): 

Consider a discrete network (KE), where Vis the set of vertices and E the set of 
directed edges. Each edge e from E has a start value start(e) and an end value end(e), 
with start(e) < end(e). The two special vertices s and t of the network are the starting 
and terminating vertices. We want to find a discrete path from s to t in our discrete 
network, where the end value of the path is minimum and the start value of the path 
is at least Tstart: 

 

 

(1) A(s) Tstart and for ally E V, v s, A(v) 4- 00 . 

(2) T V , F 4- { . 
(3) Let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path 

could be found. 
(4) If u = t, stop, an optimal path is found. 
(5) For every edge e : u v for which start(e) A(u), 

if v E T and yl,(v) > end(e) 
then A.(v) F  end(e) and F F  F + {v} . 

(6)T<-T—{u},F<-F—{u} and go to step (3). 
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We proof by induction on the number of steps that when a vertex u becomes 
permanent in step (3), we have found a path from s to u for which the end value is 
minimum In the first step, we know that u = s. Since A(s) is Tstart this is evidently 
true. Suppose at the el  step we make un  permanent with a value of Tk determined by 
some path Pi = s, e0, 	en-t, un. Now suppose there exists another path from 
s to un  with an end value less than Tk, say the path P2 = s, ea, V a+1,..., V p, ep, un. There 
are two possibilities: either vertex vp has already been made permanent, or it has not 
been. If it has, then ep  must already have been tried when vp was made permanent, so 
un  would have been labeled then and we would have found that path. Now consider 
the case that vp  is still tentatively labeled. Either the label of vp  is greater than or 
equal to the label of un, or it is smaller. In the first case the path P2 cannot have a 
smaller end value than Tk since the end value of the edge ep  connecting vp  and tint 
must be greater than its start value, which must be at least the label of vp. If the label 
of vp  is smaller than the label of un, then vp  would have become permanent at the 
kth instead of un, allowing un to be labeled from vp (using ep). 

4.2. The principle of optimality for discrete networks 

The foundation of the algorithm is formed by an assumption similar to the 
dynamic programming principle. We shall refer to this assumption as the principle of 
optimality for discrete networks: 

In a discrete network, let A(u) denote the minimum end value of any path from s to 
u in the network. If there exists a path in the network, from s to t which passes 
through vertex u and with a minimum end value, then the path which gave u its label 
A(u) is part of a path from s to t with a minimum end value. 

For the proof, suppose the contrary: there exists an optimal (discrete) path from s to 
t which passes through u: 

P opt = s, 	u, ei+1,..., eq, t 

with end(ei) A(u), and suppose there does not exist an optimal path for which the 
end value of the partial path to u is A(u). 

We know that 

end(e) A(u). 

Suppose that the partial path which gave u its label / is:  

P2 = S, ea, va+1,..., ek, u. 

Since by the definition of 1, end(ek) = A(u), we know that 

end(e) end(ek). 

And since start(ei+i) must be at least end(e), we know that 

start(ei+i) end(ek). 

But then it is possible to construct an optimal path from s to t: 

s, ea, Va+1,..., ek, U, ej+1,..., eq, t 

a path which passes trough u, for which the partial path to u has an end value of 
A(u). Which is a contradiction. 

43. An example 

Let us consider the following example (see fig. 4.1). Suppose we want to travel 
from Utg to Asd, and that we want to depart at or after 7:00. 

100 110 160 Station 
Utg 7:00 7:10 Uitgeest 
Him 7:15 7:25 Haarlem 
Ass 7:30 7:40 7:45 Amsterdam Sloterdijk 
Asd 7:50 Amsterdam Central Station 

In the first step, Utg gets labeled with 7:00 and is put in the frontier. Utg 
becomes permanent and all outgoing edges from Utg are tried, in this case edges 100 
and 110. Hlm is labeled 7:15 by trying edge 100, and is not relabeled by edge 110. 
Hlm becomes permanent and from Hlm we try edges 100 and 110. Ass gets labeled 
7:30 by 100 and is not relabeled by edge 110. Ass becomes permanent and edge 160 
is used to label Asd 7:50. Then Asd becomes permanent and we have found a path 
with an optimal end value. 

4.4. Relevant edges 

The first thing that can be noticed from the previous example is that we try 
edges which are irrelevant. When Utg became permanent, we tried edge 100 and 
then edge 110. However, since edge 100 could be applied, and since edge 110 has the 
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Utg 4.5. Suboptimality of solution 

The second thing that can be seen from the previous example is that, although 
the algorithm does give us a path with an optimal end value, this is not really the 
solution we would like to get. We asked for a trip from Utg to Asd departing at or 
after 7:00. The proposed solution to take train 100 from Utg to Ass and train 160 
from Ass to Asd, indeed makes us arrive as early as possible (7:50) while departing 
at 7:00. So, this answer does satisfy our question. But we could have made another 
trip also arriving at 7:50, but departing 10 minutes later by taking train 110 from Utg 
to Ass, instead of train 100. Obviously this solution is better! This problem is caused 
by the discreteness of the connections. Or more to the point, by the cost of the 
connections: COST (see chapter 2). In the example, since we had to wait for 15 
minutes for our next train at Ass, we might have taken one later train from Utg to 
Ass, still arriving in time for our connection. 

4.6. An optimal path in a discrete network 

Clearly, we need a better definition of what we consider to be an optimal path 
in a discrete network. In a railway service network, an optimal trip makes us arrive 
as early as possible, and given this earliest arrival time, allows us to leave' as late as 
possible, making the trip as short as possible. Similarly we define an optimal path in 
our discrete network. Given a discrete network G = (V, E), two vertices s, t, E V, 
and a starting value Tstart, a discrete path P from s to t in G is optimal if the following 
three ordered conditions hold: 

(1) start(P) 	Tstart, and 
(2) end(P) is minimum, and 
(3) start(P) is maximum, or equivalently l(P) is minimum. 

If a path P satisfies the first two conditions only, we call P suboptimal. 

4.7. Traversing the suboptimal solution 

From our example it may seem that, in order to find the optimal solution given 
a suboptimal solution, it suffices to traverse the suboptimal solution in a backward 
fashion, trying to improve it. At each vertex, we search for the edge from its 
backvertex, with the highest possible end value smaller than or equal to the label of 
the current vertex (the end vertex of the edge). In our example, at Ass we search for 
the edge connecting Him and Ass with the highest end value smaller than or equal 
to 7:45. This way the optimal solution would be found. In general, however, there is 
no guarantee that the optimal solution always uses the same route as the suboptimal 
solution. For instance, consider the following example (see fig. 4.2). 

100 
	

110 

110 

Hlm   Asd 
100 
	

160 
Fig. 4.1. 

same end vertex and the same length as edge 100, but a higher start value, we know 
for sure that edge 110 can never be used to improve a label. Given a label and an end 
vertex, only one edge departing from a vertex needs to be tried: the relevant edge. 
We define the relevant edge as follows: 

Given a vertex u and a vertex v, then the relevant edge from u to v is the edge 
e: u -› v for which the following two ordered conditions hold: 

(1) start() A(u), 
(2) end(e) is minimum. 

With this definition, step (5) of our algorithm can be changed to: 

(5) For every relevant edge e : u -' v, 
if v E T and A(v) > end(e) 
then A(v) end(e) and F F + {v} . 

This way, only one edge per neighbour is tried for relabeling this neighbour. If 
the relevant edge can be used to relabel the neighbour, than the other edges cannot 
be used to improve the label even further since for any other edge to this neighbour 
but the relevant edge, either its start value is smaller than the label of the start vertex 
(so it may not be used to construct a discrete path), or its end value is greater than or 
equal to the end value of the relevant edge, so it cannot further improve the label. If 
the relevant edge cannot be used to relabel a neighbour, then neither can any of the 
other edges to this neighbour for the same reasons. 
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Utg 

100 

Hlm 
Ass 

Fig. 4.2. 

100 125 
Utg 7:00 7:10 
Hlm 7:15 
Zd I 7:30 
Ass 7:30 7:40 
Asd 

For a trip from Utg to Asd leaving at 7:00, the suboptimal solution found by our 
algorithm is by the route Utg, Hlm, Ass, Asd (train 100 and train 160, departing at 
7:00 and arriving at 7:50) while the optimal solution is by the route Utg, Zd, Ass, Asd 
(train 125 and train 160, departing at 7:10 and arriving at 7:50). This optimal solution 
cannot be found by simply traversing the suboptimal solution. 

We are not able to find the optimal solution with our algorithm because a 
non-minimum label might lead to an optimal solution. The smallest, minimum label 
may, or may not. It all depends on what the start value of the next connection will be, 
which in turn depends on its next connection etc., ultimately depending on the start 
value of the final edge, and thus its end value. In the end the greatest possible start 
value depends on the smallest possible end value of the path. If we would want to be 
able to find the optimal solution in our algorithm, instead of having to develop 
further only one arriving path per vertex (the one giving it its minimum label), we 
would have to develop further all arriving paths (ending with non-minimum labels), 
resulting in a combinatorial explosion. 

4.8. Finding the optimal solution: the second pass 

To avoid a combinatorial explosion in the first pass, in order to find the optimal 
solution we make a second pass. After we have found the earliest possible end value  

of a path, we conduct a second, backward search in order to find the matching 
earliest possible start value. This way the first pass can remain the same, avoiding a 
combinatorial explosion. For the backward search Dijkstra's algorithm is changed in 
a straightforward way. Let the label of vertex in the second, backward search be 
denoted by K. The algorithm for the backward pass then becomes: 

(1) K(t) A(t) and for all v E V, v # t, K(v) — co 
(2) T 4t- V , F 	t} . 
(3) Let u be a vertex in F for which K(u) is maximum; if F is empty then stop, no path 

could be found. 
(4) If u = s, stop, an optimal path is found. 
(5) For every relevant edge e : v u, 

if v E T and K(v) < start(e) 
then K(v) start(e) and F 4- F + { v} . 

(6) T 4- T — { u }, F.,-F— {u} and go to step (3). 

Note that we are searching backwards: we search from the terminating vertex t 
to the starting vertex s. At the start the label of t is made the value that we have found 
in the forward search as the smallest possible end value, which is the label A.(t) of the 
goal vertex. Since we are searching backwards, we search for a path with a maximum 
start value. Also note that for the backward search the definition of a relevant edge 
is different. In the backward search the relevant edge from u to v is the edge 
e: u -> v for which the following two ordered conditions hold: 

(1) end(e) K(v), 
(2) start(e) is maximum. 

The proof of the backward version of the algorithm is similar to the proof of the 
forward version. 

4.9. Using the results from the first search 

Our second, backward search need not be a complete search. We can use the 
results from the first pass to limit the search of the second pass. In the previous 
example, when traversing the optimal solution, we would have wanted to know that 
we should go back not only to Hlm, but also to Zd. 

First, in the backward search, we only need to consider those vertices u for 
which a minimum path was found in step (3) of the (forward) algorithm. The other 
vertices in the network could not be reached by a path with an end value smaller than 
%(t) (since they had not become permanent yet). Therefore these vertices can never 

Asd 

160 
	

Station 
Uitgeest 
Haarlem 
Zaandam 

7:45 Amsterdam Sloterdijk 
7:50 Amsterdam Central Station 
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be on a path arriving at t with an end value smaller than or equal to A(t), and with a 
start value of at least Tstart. 

For the proof, suppose that vertex u was not made permanent in the first, 
forward search, but there does exist a path s,..., 	t for which the start value is at 
least Tstart and the end value smaller than or equal A(t). Then obviously, A.(u) < A(t) 
(since we do not allow zero-length edges in a discrete network), so in the forward 
search u would have been made permanent before t. If we would allow zero-length 
edges, by the way, we would have to make sure that, if in step (3) of the algorithm 
there are multiple vertices with a minimum label, then a non-terminal vertex is 
chosen. 

Second, the additional information we want (i.e. also try Zd in the example) 
becomes available if we store neighbour dependent A's, i.e. the smallest end value that 
could be used to label a vertex from each of its neighbours, instead of storing the best 
end value only. Per neighbour we store which was the smallest end value which was 
tried for relabeling. Even if the relabeling did not actually take place because the 
vertex had been labeled with a smaller value from another neighbour already! In our 
second, backward search, we only need to consider those neighbours v of a vertex u, 
for which its would have been at most K(u). Let us denote this neighbour 
dependent A. by co. So, the smallest end value that was tried to label u from v is 
w(u, v). 

For the proof, note that from the correctness of our forward pass we know that 
there does not exist a path s,..., v, u for which the start value is at least Tstart and for 
which the end value is smaller than w(u, v). Similarly, we know that when we make u 
permanent in our backward search, there does not exist a path u,..., t for which the 
start value is smaller than K(u), and the end value is at most A(t) (the end value of the 
suboptimal path for which we have to determine the matching maximum start 
value). So, if co(u, v) > K(u), then there cannot exist a path s,..., v, 	t for which 
both the start value is at least Tstart, and the end value is at most A(t). 

In our example, w(Ass, Hlm) is 7:30 and co(Ass, Zd) is 7:40. Since K(Ass) is 7:45 
we need to visit both Hlm and Ass. Now consider the next example (see fig. 4.3): 

100 160 135 Station 
Utg 7:00 7:20 Uitgeest 
Him 7:15 Haarlem 
Zd I 7:40 Zaandam 
Ass 7:30 7:45 7:50 Amsterdam Sloterdijk 
Asd 7:50 Amsterdam Central Station 

Ass 
Fig. 4.3. 

In this example w(Ass, Him) is again 7:30 and w(Ass, Zd) is 7:50. Since K(Ass) 
is 7:45 we do have to visit Hlm but we do not have to visit Zd. In our first, forward 
search we determined that Ass could not be reached earlier than 7:50 travelling by 
Zd, departing at or after 7:00 (which is stored by w(Ass, Zd)). In our second, 
backward search we find that if we want to arrive at Asd at 7:50, we must be able to 
arrive at Ass before or at 7:45 (which is stored by K(Ass)). So, in our backward search 
it is not necessary to visit Zd, for it is not possible to travel via Zd if we want to depart 
at or after 7:00 and arrive at 7:50. 

Earlier we said that it is important to record the smallest possible label from 
each neighbour even if relabeling does not actually take place. Let us take a look at 
another example to see why (see fig. 4.4). 

300 400 Station 
Utg 7:00 7:20 Uitgeest 
Him I 7:35 Haarlem 
Zd 7:20 I Zaandam 
Ass 7:30 7:50 Amsterdam Sloterdijk 
Asd 7:55 Amsterdam Central Station 

Suppose we want to travel from Utg to Asd, departing at or after 7:00. In the 
forward search, first Utg becomes permanent labeled 7:00. Zd becomes permanent 
labeled 7:20, Ass becomes permanent labeled 7:30 and Hlm becomes permanent 
labeled 7:35. When the neighbours of Hlm are examined, Ass is not even tried for 
relabeling because Ass is not a member of T, as is required in step (5). Ass is already 
part of the minimum path tree, so its label cannot be further improved. Because Ass 
is not even tried for relabeling, w(Ass, Hlm) is not set to 7:50. After we have found 

Asd 
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Asd 

(2) T4-V, F4-- {s} . 

(3) Let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path 
could be found. 

(4) If u = t, stop, a path with an optimal end value has been found. 

(5) For every relevant edge e : u v, 
if v E T and ),(y) > end(e) 
then A(v) end(e) and F F + { y} . 
if end(e) < w(v, u) 
then w(v, u) 4- end(e). 

(6) T4- T — {u}, F 4- F — ul and go to step (3). 

A relevant edge is defined as follows: given a vertex u and a vertex v, then the 
relevant edge from u to v is the edge e: u v for which the following two ordered 
conditions hold: 

Ass 
Fig. 4.4. 

 

the path Utg, Zd, Ass, Asd representing a trip with trains 300 and 400, we start 
searching backwards. In the backward search, K(Ass) becomes 7:50 but since we did 
not record w(Ass, Him) we do not visit film. 

In order to ensure optimality, we must make a record of the fact that we could 
have tried to relabel a vertex with a certain value, even though we did not even try to 
relabel it because the vertex had already been made permanent. We invest a little in 
the forward search in order to gain in the backward search. This way, in the backward 
search the search space examined can be significantly smaller than a full backward 
search. 

4.9.1. A two-pass algorithm: DISNET 

Finally, we give a formal definition of the two-pass search algorithm which finds 
an optimal path in a discrete network (if there exists one). We shall refer to this 
algorithm as the DISNET algorithm. 

Consider a discrete network (KE), where Vis the set of vertices and E the set of 
directed edges. Each edge e from E has a start value start(e) and an end value end(e), 
with start(e) < end(e). The two special vertices s and t of the network are the starting 
and terminating vertices. We want to find a discrete path from s to t in our discrete 
network, where the end value of the path is minimum and given this end value, the 
start value of the path is maximum and at least Tstart. 

Pass 1: 

(1) ,t(s) Tstart and for all y E v, v # s, A(v) 4- 00 . 
For all y E V, w(v, u) = 00 for every neighbour u of v.  

(1) start(e) 4u), and 
(2) end(e) is minimum. 

Pass 2: 

(1) K(t) ).(t) and for all y E V, y # t, K(v) — 00 . 
(2) T4- V , F 	t} . 
(3) Let u be a vertex in F for which K(u) is maximum. 
(4) If u = s, stop, an optimal path is found. 
(5) For every relevant edge e : v u, with w(u, v) ic(y), 

if v E T and K(v) < start(e) 
then K(y) start(e) and F F + yl . 

(6) T -T— {u}, F F — {u} and go to step (3). 

A relevant edge is defined as follows: given a vertex u and a vertex v, then the 
relevant edge from u to v is the edge e: u v for which the following two ordered 
conditions hold: 

(1) end(e) ic(v), and 
(2) start(e) is maximum. 

By the correctness of the first pass, after the first pass we have found a path P1 
for which start(Pi) Tstart and for which end(P1) is minimum By the correctness of 
the second pass, we know that after the second pass we have found a path P2 for 
which in addition, start(P2) is maximum. So, the algorithm gives an optimal solution. 
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Discrete Dynamic Networks 

5.1. Visiting costs 

Until now we have been ignoring one particular property of travelling by train: 
time is required to change trains. In a graph representation this translates into a 
visiting cost at a vertex. In the previous chapter, a train change was dealt with in the 
graph, by the definition of a relevant edge. For instance, in the forward pass of the 
algorithm, the definition of a relevant edge is: given a vertex u and a vertex v, then 

the relevant edge from u to v is the edge e: u -' v for which the two following ordered 

conditions hold: 

(1) start(e) A(u), and 
(2) end(e) is minimum. 

We can continue on an edge if the start value of the edge is greater than or equal to 
the label of its starting vertex (which is the end value of the arriving edge). In our 
railway service representation, this would mean that we can continue on a next train 
if it departs at or after the time of arrival of our previous train. Of course, this is not 
true in reality. The only case that we can continue on a train which departs at the 
same time as the arrival of our previous train, is when these trains are the same one! 
When the trains are not the same, then the arrival of our previous train and the 
departure of the next train must be separated by some minimum amount of time: the 
changing time or connectional margin. In the Dutch railway service network, the 
connectional margin is not a fixed value. At one station it is 2 minutes, at some other 
station it is 5 minutes. Even worse, at one single station the connectional margin 
required for two specific trains may be 2 minutes, while for some other pair of trains 
it is 5 minutes. At any station the connectional margin may range from 0 minutes (no 
change) to 5 minutes, depending on the connection. 

5.2. Platform dependency 

One of the causes of variances in connectional margins is the fact that different 
trains may arrive on or depart from different platforms. If our connection departs 
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Inter Platform Connections 

Train connections 
Train connections 

Fig. 5.1. 

from the same platform as we arrived on (or in the case of a "cross platform" change), 
we need little time to change trains. If, in order to go to the departure platform of our 
next train, we need to walk several stairs, we need more time. It seems promising to 
represent connectional margins in a similar way. Each vertex (representing a station) 
is split into several different vertices. For each platform we use one vertex for 
incoming edges (representing trains arriving at a particular platform), and one 
vertex for outgoing edges (representing trains departing from a particular platform). 
If a station has 3 different platforms, it is represented by 6 vertices. Each vertex 
representing an "arrival platform" is connected by an "inter-platform" edge to all 
vertices representing "departing platforms". In the case of 3 different platforms we 
need 9 of these inter-platform edges. The length of the inter-platform edge is made 
the time that is required to go from one platform to the other. For an example, see 
fig. 5.1. Obviously, the disadvantage of this approach is that the size of the network 
increases. If a station has p platforms on average, then the number of vertices 
becomes 2 *p * IVI, and the number of edges needed for the inter-platform 

connections isp2  * I VI . 

5.3. Train dependency 

Unfortunately, the connectional margins not only depend on the platforms of 
arrival and successive departure. Another factor which contributes to the time 
required to change trains is delay sensitivity. We should not forget that the 
timetables give only the planned times. In reality delays occur. Some connections are 
guaranteed by the railroad company. If a delay is less than, say, five minutes, then the 
connecting train is held up. Some connections are not guaranteed however, and 
although in theory one should be able to make the connection, in practice due to 
delays this is usually not the case. Even a minimal delay of one single minute may 
mean a miss. Therefore, these non-guaranteed connections are often given 

36 

connectional margins which are greater than the time required for the platform 
change only. Some margin specific for the particular connection is added. Instead of 
just platform dependent, in reality, the connectional margin may be train (edge) 
dependent. Trying to represent an edge dependent connection cost in the way the 
platform dependency can be represented as described above, may lead to a 
representation with one vertex per incoming and one vertex per outgoing edge. This 
approach is inefficient with regard to network size, as we saw in chapter two. 

5.4. A discrete dynamic network 

In order to represent an edge dependent connection cost in a discrete network 
in an adequate and general way, we have developed the concept of a discrete dynamic 

network. In a discrete dynamic network the edge dependent connection cost is 
represented by a connection function CON, which gives the margin required for a 
specific connection. A discrete dynamic network consists of two parts: 

(1) A finite directed graph (K E), where V is the set of vertices and E the set of 

directed edges, each edge of E joining two vertices from V. 

(2) A non-negative, real-valued function, called the connection function CON, 
having three arguments: a vertex and two edges. 

With each edge e from E we associate two values: 

(1) a start value start(e); 
(2) an end value end(e), satisfying start(e) < end(e). 

The length of an edge e is defined as: 

1(e) = end(e) — start(e) . 

In the representation of a railway service network the vertices represent the stations 
and the edges represent the trains. The start and end values of an edge represent the 
departure and arrival times of the train represented by the edge. The length of the 
edge represents the travel time of this train. The CON function specifies the 

(minimum) connection times when changing trains. 

A legal path P from s to t (in the discrete dynamic network) is an alternating 
sequence of vertices and edges: 

S = v0, 	 ek-1, Vk = t 
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such that 
(1) the start vertex of ei  is vi and the end vertex of ei is vi+i, 0 i < k; 
(2) and satisfying the following condition along the path, i.e. for 0 i < k : 

start(ei+1) end(;) + CON(vi+i, ei, ei+i) . 

This condition indicates that if one arrived at vertex vi-1-1 along edge then it is 
possible to continue on edge ei+1 if the difference between the start value of the 
outgoing edge, start(e,+1), and the end value of the incoming edge, end(ei), is at least 
the appropriate connection cost at vertex vi+1 (which depends not only on the vertex, 
but also on the incoming and outgoing edges). This minimum connection cost is 
CON(v,+1, ei÷i). The actual cost of a connection, COST, is defined as: 

COST(vi+i, ei, ei+i) = start(ei+i) — end(;), with 0 i < k. 

Clearly: 

COST(vi+i, 	ei+i) 	 ei, ei+i). 

The start and end of a (legal) path P are defined as: 

start(P) = start(e0) ; end(P) = end(ek _1). 

While the length of a (legal) path P, l(P), is defined as: 

1(P) = end(P) — start(P) 

5.5. Space requirements of the CON function 

The advantage of the CON function is the space requirement in case of a 
network with great differences in characteristics of connectional margins. For 
example, in the Dutch railway services network, many stations have a very simple 
connectional margin characteristic: 5 minutes in case of a train change, 0 minutes 
otherwise. For such a station v CON(v, ei, ei+i) becomes a two valued function: 

{

0 if ei and ei+1 represent the same train 
5 otherwise 

Other stations have structural exceptions. For instance: 4 minutes in case of a 
train change from a 4600 series train to a 14600 series train. For such a station v 
CON(v, ei+i) becomes a three valued function: 

{

0 if ei and ei+1 represent the same train 
4 if e, represents a 4600 series train and ei+1 a series 14600 train 
5 otherwise 

The CON can be implemented as an advanced look-up table per vertex. In case 
of a pure train-to-train dependency, each connection is an entry and its size becomes 

* 1E1 * 1E1, the same as the size of a representation using connecting edges. 
However, when situations as above occur, its size diminishes significantly. Of course, 
space is required to store the identification of a train. However, in an application like 
a railway service information system, this information has to be present anyway. 

r 

In the representation of a railway service network, the CON function specifies 
the connectional margin required for a specific train change. The connection COST 
is the time that is actually spent changing to and waiting for the next train. The start 
and end value of a path are the time of departure and the time of arrival. The length 
of a path is the duration of the trip, and includes the connection costs. We do not 
include the time the passenger may have waited at the station at the start of her trip, 
nor the time she might spent loitering at the arrival station. Time needed for 
transportation to the station of departure, and from the station of arrival to the final 
destination of the trip (which is hardly ever the train station), is also not included. 
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6. Searching Discrete Dynamic 
Networks 

6.1. Adapting the search algorithm to discrete dynamic networks 

In order to construct a search algorithm for a discrete dynamic network, as a 
basis we use the search algorithm that we have developed for a discrete network 
(DISNET). In a discrete dynamic network the connection function CON is added. 
The most apparent place to get the CON function into the algorithm is to include it 
in the definition of a relevant edge. Since the CON function is dependent on not only 
the vertex, but also on both the next and the previous edge, we have to know with 
which edge we labeled a vertex. Therefore we introduce the notion of a partial path. 
In the forward case, a partial path is a legal path from the starting vertex to a non 
terminating vertex. A complete path is a legal path from the starting vertex to the 
terminating vertex. In the algorithm, the frontier F will consist of partial paths to 
tentatively labeled vertices, instead of the tentatively labeled vertices themselves. 
Only those partial paths which gave a vertex its smallest tentative label are 
considered for further development in the algorithm. We shall now give the 
DISNET algorithm, in a direct adaptation to discrete dynamic networks. 

Consider a discrete dynamic network consisting of the graph G = E) and the 
connection cost function CON. The two special vertices s and t of the network are the 
starting and terminating vertices. We want to find a legal path from s to t in our 
discrete dynamic network, where the end value of the path is minimum and given 
this end value, the start value of the path is maximum and at least Tstart. 

Pass 1: 

(1) A(s) 4- Tstart and for all v E V, v s, il(v) <- 00 . 
Create a partial path P0 consisting of s only, end(P0) F Tstart. 

For all v E V, w(v, u) = 00 for each neighbour u of v. 
(2) T 	, F 4- { P0} . 
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A relevant edge is defined as follows: given a partial path uj, ej, 	uk and a 
vertex uj-1, then the relevant edge from uj-1 to uj is the edge ej_i: uj-1 -> uj  for which 
the following two ordered conditions hold: 

(1) end(ei-1) s start(ej) — CON(uj, 	ei), and 

(2) start(ei-1) is maximum 

6.2. A counter example: the effect of CON 

Unfortunately, it does not suffice to adapt the algorithm in this straightforward 
way. Because of the differences in values that the CON function may return for 
different connections at the same vertex, in some cases, the algorithm described 
above will not find an optimal path. For instance, consider the following example 
(see fig. 6.1). Suppose we want to travel from Utg to Asd, and that we want to depart 
at or after 7:00. Furthermore, the changing time is 5 minutes for all train changes at 
Ass (and 0 minutes in the case of no train change). 

Utg 

100 

Hlm 

100 125 150 

Fig. 6.1. 

Station 
Utg 7:00 7:02 Uitgeest 
Hlm 7:15 Haarlem 
Zd 7:22 Zaandam 
Ass 7:30 7:32 7:40 Amsterdam Sloterdijk 
Asd 7:37 7:45 Amsterdam Central Station 

In this example, first Utg gets labeled with 7:00. From Utg, Hlm gets labeled 
with 7:15 and Zd with 7:22. From Hlm, Ass gets labeled 7:30. From Zd, Ass does not 
get relabeled. Consequently, the partial path from Utg to Ass, arriving at 7:32, will 
not be developed further (since A(Ass) = 7:30). The path from Utg to Ass arriving at 
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(3) Let Pm  be a partial path s, e0, 	 uj  in F for which end(Pm) is 
minimum; if F is empty then stop, no complete path could be found. 

(4) If uj  = t, stop, Pm  is a complete path with an optimal end value. 
(5) If end(Pm) = A(uj) 

then for every relevant edge ej : uj -> ujn: 
if ujn E T and A.(uj+i) > end(ej) 
then A(uj+i) end(ej) and create a partial path 

PII = s, e0, 	uj-1, ej-1, up ej,  ui+i, F F + { Pn} . 
if end(ej) < w(ui+i,ui) 

then to(uj+1, 	end(ei). 
(6) T4-T— 	F*-F— { Pm} and go to step (3). 

A relevant edge is defined as follows: given a partial path u0,..., uj-1i 	uj and a 
vertex ujn, then the relevant edge from uj  to uj+1 is the edge ej: uj  -> uj+1 for which 
the following two ordered conditions hold: 

(1) start(ej) end(ej-1) + CON(u j, es-1, ej), and 
(2) end(ej) is minimum. 

In the backward case, a partial path is a legal path from a non-starting vertex to 
the terminating vertex. The frontier will consist of partial paths from tentatively 
labeled vertices. Only those partial paths which gave a vertex its highest tentative 
label are considered for further development in the algorithm. We shall now give the 
backward pass: 

Pass 2: 

(1) K(t) A(t) and for all v EV,v # t, K(v) —00 . 
Create a partial path P0  consisting of t only, start(P0) A(t). 

(2) T 4- V , F { P0} . 

(3) Let Pm  be a partial path uj,..., 	ek-1, t in F for which start(Pm) is maximum. 
(4) If uj = s, stop, Pm  is an optimal complete path. 
(5) If start(Pm) = 

then for every relevant edge ej-1 : uj-1 -> uj, with w(uj, uj-1) 
if uj-1  E T and K(uj_i) < start(ej _1) 

then K(u j-1) F  start(ej-1) and create a partial path 

Pll = 	ei-1) Ui3..., uk-1, 	t, F F + { Pn} . 
(6)T4-T— {ad, FE-F— {Pm} and go to step (3). 
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7:30 does get developed further and Asd gets labeled with 7:45, since the 7:32 from 
Ass to Asd may not be used as it is separated from our arrival at Ass by only 2 
minutes, while 5 minutes are required. As the earliest possible time of arrival we 
incorrectly find 7:45. Consequently, the backward pass will incorrectly find as 
optimal solution a trip from Utg to Ass by train 125 and from Ass to Asd by train 150! 

63. The invalidity of the Markovian property 

The cause of the incorrectness of the algorithm as described above lies in the 
fact that a discrete dynamic network does not have the Markovian property (see 
chapter 3). The Markovian property means that if a shortest route from s to t passes 
through the vertex u, then a shortest path from s to u is part of a shortest path from s 
to t. However, this is not the case in a discrete dynamic network. Suppose we have an 
optimal legal path from s to t: 

Poet = s,...,ei 	t. 

Since the path is legal, we know that 

start(ei) — end(ej-i) CON(up ej-1, 

Suppose there exists a partial path: 

s,..., ek-1, uj 

such that end(ek-1) < end(ej-1). 

It may be so, however, that 

start(ej) — end(ek-1) < CON(up  ek-1, es). 

So, 

CON(uj, ej-1, ej) < CON(uj, ek-1, ej) 

with end(ek) < end(e J-1). 

Therefore it is not possible to construct the path s,..., ek-1, up 	t, which would 
have given a new optimal path. Furthermore, the best possible completion of the 
best partial path: s,..., ek-1, uj, ek,..., t, may have an end value worse than the end value 
of the optimal path Popt. In conclusion, a non-optimal partial path to a vertex may 

yield an optimal complete path, while an optimal partial path to that vertex cannot 
be used to construct an equivalent optimal complete path. 

6.4. The principle of optimality for discrete dynamic networks 

Clearly, an algorithm finding an optimal path in a discrete dynamic network 
must remember more partial paths per vertex than just the optimal partial path. 
Fortunately, we can give an upper bound on the end values of the partial paths which 
need to be remembered (and developed further). We shall refer to this upper bound 
as the principle of optimality for discrete dynamic networks: 

In a discrete dynamic network, let maxiCON(u) denote the maximum value that the 
CON function gives for any connection at u (which is non-zero), and let A(u) denote 
the minimum end value of any partial path from s to u in the network. If there exists 
a legal path P from s to t in the network, with a minimum end value, and which passes 
through vertex u, then from the paths from s to u which have an end value which is at 
least A(u) and less than A(u) + maxiCON(u), at least one partial path is part of a 
complete path from s to t with a minimum end value. 

For the proof, suppose the contrary: there exists an optimal path: 

Popt = 	ej, u, 	t 

with end(ej) A(u) + maxiCON(u), 

and there does not exist an optimal path for which the end value of the partial path 
to u is within the maxiCON interval. 

We know that 

end(ei) A(u) + maxiCON(u). 

Suppose that the partial path which gave u its label A is: 

PA = 	ek, u. 

Since by the definition of A, end(ek) = A(u), we know that 

end(ei) end(ek) + maxiCON(u). 

And since start(ei+i) must be at least end(ej), we know that 
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start(ej+i) 	end(ek) + maxiCON(u). 100 115 150 Station 
Utg 7:00 Uitgeest 

By the definition of maxiCON we know that 	 11lm 7:15 7:18 Haarlem 
Ass 7:30 7:33 7:40 Amsterdam Sloterdijk 

CON(u, ek, ei  +1) < maxiCON(u). 	 Asd 7:38 7:45 Amsterdam Central Station 

So, 

start(ei+i) end(ek) + CON(u, ek, ej+i). 

But then it is possible to construct an optimal complete path 

PaIt = 	ek, u, 	t 

for which the partial path to u arrives within the maxiCON interval. Which is a 
contradiction, since end(ek) A(u) + maxiCON(u). 

6.5. Relevant edges in discrete dynamic networks 

Since the edge giving a vertex its smallest label may not lead to an optimal path, 
while an edge giving it a higher label might, we also need to change the definition of 
a relevant edge. To see why, consider the next example (see fig. 6.2). Suppose we 
want to travel from Utg to Asd, and that we want to depart at or after 7:00. 
Furthermore, the changing time is 5 minutes for all train changes at Ass, and 3 
minutes for all train changes at Hlm 

Utg 

100 

115 

s 	115  
Hlm Asd 

100 100 

Fig. 6.2. 
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In this example, after Hlm is labeled with 7:15, the relevant edge to Ass is the 
7:15 arriving at 7:30. Since this train does not travel further to Asd, and since we 
cannot catch the 7:33 at Ass, we then travel to Asd with train 150, arriving at 7:45. 
However, we could have changed at Him to train 115 which would have taken us to 
Asd, arriving at 7:38! Although this train was not within the maxiCON interval at 
Hlm, it is within the maxiCON interval at Ass. From this example we see that with 
the current definition of a relevant edge, we could miss edges giving a vertex a label 
within the A + maxiCON interval. In order to solve this problem, we define a 
relevant edge as follows: given a partial path u0,..., ui-i, 	uj and a vertex uj+i, then 
the relevant edges from u j  to uj+1 are the edges ei: 	uj+1 for which the following 
two ordered conditions hold: 

(1) start(ei) end(ei-1) + CON(ui, 	ej), and 
(2) end(ej) < end(ernin) + maxiCON(ui+i), 

where end(em,n) is the minimum end value of any edge satisfying (1). 

6.6. A search algorithm for discrete dynamic networks: DYNET 

Now that we have an upper bound on the partial paths that we need to 
remember so that we cannot miss the optimal solution, and a matching definition of 
a relevant edge, we can construct a search algorithm for discrete dynamic networks. 
We shall refer to this algorithm as the DYNET algorithm. 

Since we need to remember and develop further multiple partial paths to a 
vertex, it may be that one of the partial paths has already been developed further 
when another partial path reaches that vertex. Therefore, in step (5) of the 
algorithm, we can no longer test whether a vertex has not been made part of the 
shortest path tree yet (the test whether the vertex is part of the collection 7). A 
vertex can be part of the shortest path tree multiple times. So, the collection T, which 
contains all vertices which have not been made part of the shortest path tree, is no 
longer necessary. 

Consider a discrete dynamic network consisting of the graph G = (KE) and the 
connection cost function CON. The maximum value of CON at a vertex u is 
maxiCON(u), which is non-zero. The two special vertices s and t of the network are 
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the starting and terminating vertices. We want to find a legal path from s to t in our 
discrete dynamic network, where the end value of the path is minimum and given 
this end value, the start value of the path is maximum and at least Tstart. 

Pass 1: 

(1) A(s) 	Tstart and for all y E V, y s, ).(v) 4- 00 . 
Create a partial path P0 consisting of s only, end(P0) Tstart. 
For all v E V, w(v, u) = 00 for each neighbour u of v. 

(2) F 4—  { P0} . 

(3) Let Pm  be a partial path s, e0, 	uj_i, ej-1, uj in F for which end(Pm) is 

minimum; if F is empty then stop, no complete path could be found. 
(4) If = t, stop, Pm  is a complete path with an optimal end value. 
(5) If end(Pm) < A(uj) + maxiCON(u). 

then for every relevant edge ej : uj -> uj+i: 
if A.(uj+i) > end(ej) 
then A(uj+i) <- end(ej) 
if end(ej) < A(uj+i) + maxiCON(ui+i) 
then create a partial path Pn = s, e0, 	ui-i, ej-i, uj, ej, uj+1 and 

F F +{Pn} . 
if end(ej) < co(uj+i, uj) 
then co (uj+i, 	end(ej). 

(6)F4-F- { Pm} and go to step (3). 

A relevant edge is defined as follows: given a partial path u0,..., uj-i, ej-i, uj and a 
vertex uj+i, then the relevant edges from uj  to uj+1 are the edges ej: uj -> uji-i for 
which the following two ordered conditions hold: 

(1) start(ej) a end(ej-i) + CON(uj, ej-i, e'), and 
(2) end(ej) < end(emin) + maxiCON(uj+i), 

where end(emin) is the minimum end value of any edge satisfying (1). 

Pass 2: 

(1) K(t) F  A(t) and for all y E v, v t, K(v) 
Create a partial path P0 consisting of t only, start(P0) F  A.(t). 

(2) F { P0} . 
(3) Let Pm  be a partial path uj,..., 	ek-i, t in F for which start(Pm) is maximum. 

(4) If uj = s, stop, Pm is an optimal complete path. 
(5) If start(Pm) > K(uj) - maxiCON(u) 

then for every relevant edge ej-i : uj-i -> uj, with (qui, uj-i) 5 start(Pm), 
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if K(uj-1) < start(ej_i) 
then K(uj_i) <- start(ej-0 
if start(ej-i) > K(uj-1) - maxiCON(uj-i) 
then create a partial path Pn = 	uj,..., Uk-1, ek—i, t and 

F F + { Pn} . 

(6)F4-F- {Pm} and go to step (3). 

A relevant edge is defined as follows: given a partial path uj, ej, uj+1,..., uk and a 
vertex uj_i, then the relevant edges from ui-i to uj  are the edges ej-i: ui-i -> uj for 
which the following two ordered conditions hold: 

(1) end(ej-i) < start(ej) - CON(uj, ej-i, ej), and 
(2) start(ej-1) > start(e m.) - maxiCON(ui-1), 

where start(em..) is the maximum start value of any edge satisfying (1). 

6.6.1. The correctness of the forward pass 

For the correctness of the algorithm we first prove that when in step (3) of the 
first pass, a vertex uj is the end vertex of a partial path for the first time, then we have 
found a path from s to uj for which the end value is minimum 

We remark first that since any path but the zero-length path to s is constructed 
in step (5) of the algorithm, the first time we find a partial path in step (3), arriving 
at a vertex u # s, its end value must be equal to A.(u). 

The first time that we reach step (3), we know that the only path in F is the 
zero-length path to s with end value Tstart.  Evidently, this end value is minimum 

Suppose at the kth  time that we reach step (3), for the first time we find a partial 
path arriving at u, say the path 

= 	ej, u, with an end value end(ej) = A(u). 

Now suppose there exists another partial path from s to u with an end value less than 
A(u), say the path 

Pait 	ep-i, v, ep, u, with an end value end(ep). 

There are two possibilities: either the vertex v has already been the end vertex of a 
partial path in step (3) or it has not been. We examine both possibilities in turn: 
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(1) If v has been the end vertex of a partial path in step (3), then there are again two 
possibilities: either /1(v) + maxiCON(v) < A(u) or A(v) + maxiCON(v) A(u). 

If A(v) + maxiCON(v) < A(u), then any path 

= 	eq, v 

arriving at v within il(v) + maxiCON(v) must have been selected from F before the 
path P. And by the principle of optimality for discrete dynamic networks, one of 
those paths could have been used to construct the path 

	

Pv,u = 	eq, v, ep, u 

with an end value of end(ep). 

If .1.(v) + maxiCON(v) > 2(u), then since end(ep) < 2(u), it must be true that 
end(ep-1) < 2(u). So, the partial path 

Pv = 	ep  - 1, v 

must have been selected from F in step (3) before the path P. Consequently, in the 
following steps this path would have been used to construct the path 

Pv,u = 	ep-1, v, ep, u 

with an end value of end(ep). 

(2) Now consider the case that v has not yet been the end vertex of a partial path in 
step (3). Then either the label of v is greater than or equal to the label of u, or it is 
smaller. 

If the label of v is greater than or equal to the label of u, then the path Past cannot 
have a smaller end value than 2(u). 

If the label of v is smaller than the label of u, then the partial path which gave v 
its label must have been selected from F before Pu, which is a contradiction. 

6.6.2. The correctness of the backward pass 

For the proof of the backward pass we only need to show that it suffices to 
construct those paths to neighbours for which w(uj, 	start(Pm) in step (5), 
where Pm  = uj, ej, 	 t. 
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The rest of the proof is similar to the proof of the forward pass. 

From the correctness of the forward pass we know that there does not exist a 

partial path 

Ps = 	Uk-1, ek-1, 	ek, uj 

for which the end value is smaller than w(uj, uj-1), and the start value is at least 

Tstart. So, if 

co(ui,uj-i) > start(Pm) = start(ej), 

then we know that for every path Ps with a start value of at least Tstart 

end(ek) > start(e j). 

But then surely for every path Ps  with a start value of at least Tstart 

end(ek) + CON(u j, ek, ej) > start(e j). 

So, there does not exist a path Ps with a start value of at least Tstart, which can be used 

to construct a legal path with Pm. Therefore we could never develop an optimal path 

out of Pm  by using neighbour ui -1. 

Since we have proven that the first pass gives the smallest possible end value, 
and that the backward pass gives the highest matching start value, the correctness of 

the algorithm follows. 

6.7. Dynamic generation of vertices 

What the algorithm does conceptually speaking, is dynamically generating a 
vertex for each arriving edge. Each partial path arriving at a vertex u can be seen as 
a vertex for the arriving edge. The edge connecting the vertex to departing edges is 
(implicitly) represented by the connection cost function CON. The departing edge is 
implicitly represented by the vertex representing the arrival of this edge. In the 
algorithm, only those vertices are generated, which represent arriving trains which 
may be of interest for an optimal solution. This approach is obviously more efficient 
with regard to memory usage, than the vertex representation discussed in the 
previous chapter. 
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® General Dynamic Networks 

Visiting costs as described in the previous chapter are not restricted to discrete 
networks. In this chapter we shall look at an example where visiting costs occur in a 
ordinary weighted graph. To represent visiting costs in an ordinary graph adequately, 
we propose a dynamic network. 

7.1. An example application 

If we want to represent a network of roads we can use a weighted graph. The 
vertices of the graph represent cities and junctions. The edges of the graph represent 
the roads. The length of an edge representing a road is the driving time under normal 
driving conditions (not including stops and observing speed limits). A road may be 
for instance a state highway, a provincial highway or a secondary road. Driving times 
may vary depending on properties such as the class of the road, the number of lanes 
and the road surface. Furthermore, extra time may be required when one changes 
highways or roads. Changing roads may involve using exit and entry lanes, 
roundabouts or connecting roads within a city. Consider the following example (see 
fig. 7.1), which is an (imaginary) junction: 

    

A9 

 

AS 

 

 

AS 

 

A9 

    

Fig. 7.1. 	 Fig. 7.2. 

52 
53 



r 

 

If it takes 2 minutes to change from the A9 to the A5 at the junction (due to 
connection characteristics such as traffic lights or due to the decelerating and 
successive accelerating), then we cannot add those two minutes to the length of 
either the A5 or A9 section, since the cost is not applicable if one travels through on 
either the A5 or A9 at the junction. If multiple roads with different connection 
characteristics exist between two junctions, then the changing cost may be different 
for each road, yielding an edge dependent visiting cost. Rather than using an edge 
between the appropriate sections as in fig. 7.2, which requires 4 vertices and 6 edges 
in the case of a crossing of two roads, we propose to use a connection function. 

7.2. Dynamic networks 

A dynamic network consists of two parts: 

(1) A finite weighted graph G = E), where Vis the set of vertices and E the set of 
edges, each edge of E joining two vertices from V is assigned a non-negative 
length. 

(2) A non-negative, real-valued function, called the connection function CON, 
having three arguments: a vertex and two edges. 

A legal path P from s to t (in the graph) is an alternating sequence of vertices and 
edges: 

	

S = v0, e0,vi,...,vj, ej, v 	ek-1, Vk = t, 

such that the start vertex of ei is vi and the end vertex of ei is v,+1, 0 i < k. 

While the length of a (legal) path P, l(P), is defined as: 

k-1 	 k-1 

1(P) = 	1(ei) + E 	CON(vi, el-1, ei). 
i=0 	i=1 

The length of a path is the sum of the lengths of all edges on the path plus all the 
connection costs along the path. In the representation of a road network, the length 
of a path represents the driving time of all the roads plus the time lost due to road 
changes. 

7.3. Searching a dynamic network 

Since the discrete aspect of the connections is missing in a dynamic network, we 
do not have to make a two-pass search. We can adapt the algorithm we developed for 
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a discrete dynamic network, leaving out those aspects which dealt with the 
discreteness of the connections and the two passes. Here is a search algorithm for a 
dynamic network: 

Consider a dynamic network consisting of the graph G = 	E) and the 

connection cost function CON. The maximum value of CON at a vertex u is 

maxiCON(u), which is non-zero. The two special vertices s and t of the network are 

the starting and terminating vertices. We want to find a legal path from s to t in our 
dynamic network, where the length of the path is minimum 

(1) A(s) 4- 0 and for all v E V,v s, A(v) <- co . 
Create a partial path P0 consisting of s only, end(P0) 4-  0. 

(2) F { P0} . 

(3) Let P. be a partial path s, e0, 	u j-i, 	ui in F for which l(P) is minimum; if 

F is empty then stop, no path could be found. 
(4) If ui = t, stop, P. is a path of minimum length. 

(5) If end(Pm) < A(uj) + maxiCON(uj). 
then for every edge ej : 	ui +1: 

if .1.(ui +1) > A(ui) + 1(ej) + CON(uj, e j-i, ei) 
then A(uj+i) 	+ l(ej) + CON(uj, ej-i, ej) . 

if .1(u) + l(ej) + CON(uj, ej-i, ej) < yl(uj+i) + maxiCON(u j+1) 
then create a partial path Pi, = s, e0, 	ui-i, 	uj, ej, uj+1 and 

F F +{ Pn} . 
(6) F 4-  F — { Pm} and go to step (3). 

7.3.1. The principle of optimality for dynamic networks 

The foundation of this algorithm lies in an assumption similar to the principle of 
optimality for dynamic programming. We shall refer to this assumption as the 
principle of optimality for dynamic networks. Here is the assumption: 

Suppose that in a dynamic network, a legal path P from s to t with a minimum length 

passes through vertex u. Furthermore let maxiCON(u) denote the non-zero 

maximum value that the CON function gives for any connection at u, and let A(u) 

denote the length of the minimum path from s to u. Then from the partial paths from 

s to u which have a length which is at least A(u) and less than ,1(u) + maxiCON(u), at 

least one partial path is part of a complete path from s to t with a minimum length. 

For the proof, suppose the contrary: there exists a path with a minimum length: 

	

P opt = 	ej, u, ei+1,..., t. 
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We divide the path into two partial paths: 	 For which, 

Ps, u = 	u ; Pu, t  = u, 	t. 	 1(Palt) = l(PA) + CON(u, ek, ei+i) + 1(Pu, 

Clearly, 	 Since, 

1(1)  opt) = 1(Ps,u) + CON(u, ej, ei+i) + /(Pu, t), 	 l(PA) + CON(u, ek, ei+i) + l(Pu,t) s 1(Ps, u) + CON(u, ej, ej+i) + l(Pu,t), 

Suppose that for the length of the partial path 1(Ps,u) %(u) + maxiCON(u), and 
there does not exist a path with a minimum length for which the length of the partial 
path to u is within the maxiCON interval. 

We know that 

1(Ps, u) A.(u) + maxiCON(u). 

Suppose that the partial path which gave u its label A is: 

PZ = 	ek, u. 

Since by definition l(P2) = A(u), we know that 

l(PA) + maxiCON(u) s 1(Ps,u). 

By the definition of maxiCON we know that 

CON(u, ek, ei+i) < maxiCON(u). 

So, 

1(PA) + CON(u, ek, ej+i) < 1(Ps,u), 

then surely 

l(PA) + CON(u, ek, ej+i) < l(Ps,u) + CON(u, 

But then it is possible to construct the following complete path 

Palt = 	ek, u, +14_, t.  

We get 

/(Pait) < /(Popt). 

Since /(Popt) is minimum, it must be that 

1(Palt) = /(Popt). 

So, the length of this new path Palt must be minimum while the length of its partial 
path to u is less then A (u) + maxiCON(u). Which is a contradiction. 

7.3.2. The correctness of the algorithm 

For the correctness of the algorithm we proof that when in step (3) of the 
algorithm, a vertex ui  is the end vertex of a partial path for the first time, then we 
have found a path of minimum length from s to 

We remark first that, since any path but the zero-length path to s is constructed 
in step (5) of the algorithm, the first time we find a partial path in step (3), arriving 
at a vertex u s, its length must be equal to A(u). 

The first time that we reach step (3), we know that the only path in F is the 
zero-length path to s. Evidently, its length is minimum. 

Suppose at the kth  time that we reach step (3), for the first time we find a partial 
path arriving at u, say the path 

Pu = 	ej, u, with a length of A(u). 

Now suppose there exists another partial path from s to u with a length less than 
A(u), say the path 

Palt = 	ep-1, v, ep, u, with a length /(Pait). 
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There are two possibilities: either the vertex v has already been the end vertex of a 
partial path in step (3) or it has not been. We examine both possibilities in turn: 

(1) If v has been the end vertex of a partial path in step (3), then there are again two 
possibilities: either A(v) + maxiCON(v) < A(u) or A(v) + maxiCON(v) A(u). 

If A(v) + maxiCON(v) < A(u), then any path 

Pv = s,..., eq, V, 

with a length less than A(v) + maxiCON(v), must have been selected from F before 
the path P. And by the principle of optimality for dynamic networks, one of those 
paths could have been used to construct the path 

7.33. Dynamic generation of vertices 

As with the algorithm for searching a discrete dynamic network, what the 
algorithm does conceptually speaking, is dynamically generating a vertex for each 
arriving edge. The edge connecting the vertex to departing edges is (implicitly) 
represented by the connection cost function CON. In the algorithm, only those 
vertices are generated, which represent arriving edges which may be of interest for 
an optimal solution. 

Pv,. = s,..., eq, v, ep, u. 

So, we would have found a path with a length of L(Pait) then. 

If A(v) + maxiCON(v) ?:. A(u), then since it must be true that l(Pv) < A(u), the 
length of the partial path 

Ps, v = s,..., ep-1, v 

must satisfy 

l(Ps,v) < A(u). 

So, Ps, v must have been selected from F in step (3) before the path Pu. Consequently, 
in the following steps this path would have been used to construct the path Pait. 

(2) Now consider the case that v has not yet been the end vertex of a partial path in 
step (3). Then either the label of v is greater than or equal to the label of u, or it is 
smaller. 

If the label of v is greater than or equal to the label of u, then the path Pait cannot 
possibly have smaller length than 2(u). 

If the label of v is smaller than the label of u, then the partial path which gave v 
its label must have been selected from F before Pti , which is a contradiction. 
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8. Space Reduction Method 

When searching, it may often prove to be more efficient to first reduce the size 
of the search space and then to search that reduced space, instead of just searching 
the entire, initial search space. The gain will be increased if the search space will be 
searched several times, perhaps to find solutions with different characteristics. 
There is an obvious danger: when cutting the search space, we must be careful not to 
eliminate the optimal solutions to the original problem, or more generally, the 
interesting solutions to this problem. We describe the Space Reduction Method 
SRM, which reduces a search space without losing optimal solutions. SRM is 
particularly applicable to searching graphs in which pairs of vertices are connected 
by several parallel edges. SRM is independent of the search method used. We shall 
show how it can be used on a railway service network, an example of a discrete 
(dynamic) network. This chapter is largely similar to [Si, 1991]. 

8.1. Domains of application 

SRM can be applied to any domain which can be represented by a graph in 
which often several parallel edges occur. A transportation service network, 
represented by a discrete network (or possibly a discrete dynamic network), is an 
example of such a domain. The stops are the vertices of the network, while the edges 
are particular transportation services linking two vertices. For example, the vertices 
may be the stations Utrecht CS and Woerden, the edges the trains connecting these 
stations as in fig 8.1 (a small excerpt of the 1989-1990 Dutch time-tables). In fig. 8.1, 
foot-note (1) means that a train does not run on Saturdays, Sundays and public 

holidays, December 27th, 28th, and 29th, April 13th, and May 25th. The "two hammers" 
sign means that a train runs on weekdays and Saturdays only. An encircled A means 
that a train runs on weekdays only, a t means that a train runs on Sundays and public 
holidays only. A bus service network and an air service network are similar to a 
railway service network. 
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Fig. 8.1 An excerpt from the 1989 - 1990 Dutch time-tables. 
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8.2. The algorithm for SRM 

Suppose we want to search a certain discrete (dynamic) network for an optimal 
path from the source vertex s to the terminating vertex t. The network may be large 
because there are many vertices, or because many parallel edges occur. In these 
cases we may want to use SRM to speed up search. In SRM we first search an 
abstracted version of the network in order to determine which vertices lie on paths 
which can result in optimal solutions in the "real" network. The steps in SRM are the 
following: 

(1) { Section 8.3.1: The Idealized Skeleton Graph ISG } The discrete network is 
transformed into its Idealized Skeleton Graph, ISG. Effectively, the Idealized 
Skeleton Graph is a weighted directed graph in which only a shortest of the 
(parallel) edges joining two vertices in the discrete network (together with its 
length) is present. The information about the start and end values of edges is not 
kept. 

(2) { Section 8.3.2: The Idealized Solution IS } We search for an optimal solution IS 
from s to t in ISG. Let the length of this optimal path be l(IS). 

(3) { Section 8.3.3: Loosening the solution in ISG } In ISG, we find all vertices which 
are on paths joining s and t, of length less than (1 + p) * l(IS), where p 0. The 
set of these vertices is V': the reduced set of vertices. Note that s and t are in V. 

(4) { Section 8.3.4: The Reduced Graph G' } The set of edges E is reduced to E', 
which contains those edges from E which join vertices from V'. We thereby 
construct the reduced graph G' = (V , E'). 

(5) { Section 8.3.5: The search in the Reduced Graph G': first pass } We search for 
the optimal solution from s to t in G'. Let its length be (1 + q) * l(IS). Note that 
q 0. If no solution is found, SRM has failed to define a feasible reduced graph, 
and we may have to resort to searching the entire graph G. 

(6) { Section 8.3.6: Verification of optimality } If q p, we have found an optimal 
solution. 

(7) { Section 8.3.7: Repair: second pass } Otherwise, if q > p, we may, or may not. To 
verify and eventually find an optimal solution, we replace p by q and go back to 
step (3). We then obtain a (possibly new) set of vertices V' 2 V', and a new set 
of edges E" 2 E'. When searching the corresponding graph G" = (V", E"), the 
solution found in step (5) will definitely be optimal. 

8.3. The different steps in SRM 

We now describe and illustrate each step of the space reduction method.  

8.3.1. The Idealized Skeleton Graph ISG 

In this step, throughout G we replace all the edges from E joining two vertices 
(the parallel edges), by one single edge which has the same length as the shortest of 
the parallel edges (if there exists one edge only, this edge is replaced by an edge with 
the same length). In this way we create a new set of edges EISG, and define the 
Idealized Skeleton Graph ISG = (V, EISG). Here is the algorithm to create EISG: 

Consider a discrete network G = E), where Vis the set of vertices and E the 
set of directed edges. Each edge e from E has a start value start(e) and an end value 
end(e), with start(e) < end(e). We shall construct the Idealized Skeleton Graph ISG 
= (V, EISG). 

(1) EISG 4  0 

(2) For each edge e: u --> v in E: 
If there does not exist an edge e' in EISG such that e': u --> v , 

or if it does exist and end(e) — start(e) < 1(e'). 
Then create an edge etsG: u -> v , 1(eisG) end(e) — start(e) , 

EISG F EISG {eISG}. 

In our example of fig. 8.1, the 37 edges (directly) connecting Utrecht CS and 
Woerden in the discrete network representing this time-table, are replaced by one 
edge with a length of 10 in ISG. It is not important to know which edge in the discrete 
network induced the edge in ISG, nor the exact start and end values of this edge, nor 
the fact that there may also exist a longer edge (in our example an edge with length 
12, representing train 19018 departing at 7:32). We only need to know that there 
exists at least one edge connecting Utrecht CS and Woerden, with a length of 10, and 
no shorter ones. 

Note that 1 EtsG1 	1E1; the vertices in G and ISG are are the same. The 
Idealized Skeleton Graph is built only once for a fixed network. Also note that ISG 
is a weighted, directed graph whose edges have a non-negative length. 

8.3.2. The Idealized Solution 

In ISG we search for an optimal path from s to t. We call a solution to this 
problem the Idealized Solution. Since ISG is a directed, weighted graph, we can use 
any suitable graph search algorithm, for instance Dijkstra's algorithm, see [Di, 1959]. 
Let the Idealized Solution be the path IS, with length l(IS). Note that the solution 
represented by the path in ISO may not be realizable in reality (i.e. in G). In our 
example of fig. 8.1, if the Idealized Solution includes the edge from Utrecht CS to 
Woerden, the underlying assumption is that we travel from Utrecht CS to Woerden 
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by a direct train, taking 10 minutes. However, if we would arrive at Utrecht CS at 
10:05, we just missed the 10:03 direct train and we would take the 10:09 stopping 
train, taking 13 minutes for the trip. Note that this last train is represented in ISG by 
two edges: one from Utrecht to Vleuten with length 6 (induced by, for example train 
9910), and one from Vleuten to Woerden with length 5 (induced by train 9814). The 
Idealized Solution does not take into account the exact times of departure or arrival 
(start and end values in a discrete network), time margins necessary to change trains 
(the CONnection function in a discrete dynamic network), nor other restrictions 
(such as foot-notes of trains); it is the absolutely best solution one could hope for, 
and is often not realizable. 

8.3.3. Loosening the solution in ISG 

Since the Idealized Solution is usually not realizable in G, we loosen it: we 
consider all solutions in ISG with a length larger than /(/S), but smaller than Liimit, 
where: 

Liimit  = (1 + p) * l(IS), wherep 0. 

For example, we might take p = 0.5. The choice of the size of p will be discussed 
below. When we compute in ISG all solutions of length at most Liimit, we gather the 
vertices on the paths representing these solutions in the set r: the reduced set of 
vertices. 

For the computation of these solutions, we need to know all paths from s to t, of 
length at most Liimit. Explicitly constructing all these paths may be very time 
consuming, since these paths need not be disjunct. 

There is a way to find all the vertices we need without explicitly constructing all 
possible paths. We first conduct a search from the starting vertex s to determine all 
vertices u for which there exists path from s to u with length less than or equal to 
Liimit. For instance, we can use Dijkstra's algorithm, stopping when the label of the 
vertex that is made permanent in step (3) (see chapter 3) is greater than Liimit. Then 
we conduct a backward search from the terminating vertex t to determine all vertices 
v for which there exists a path from v to t with length less than or equal to Liimit. In 
this second search we only need to consider those vertices which were made 
permanent in the search from s. For each vertex u that was not made permanent in 
the first search, there does not exist a path from s to u with a length less than or equal 
to Liimit. So there cannot exist such a path from s to t via u. If, in the algorithm, we 
initialize 6s(u) (the length of the shortest path from the source vertex s to the vertex 
u) to co for every vertex u, then every vertex that was made permanent in the first 
pass, has a Os value of at most Liimit. So, of each vertex v that was made permanent in 

the second search (and thus in both searches), we know the length of a shortest path 

from the source vertex s to v, 6s(v), and the length of a shortest path from v to the 

terminating vertex t,6t(v). Then we select those vertices v for which 6s(v) + 60) 5 

Limit. Clearly, only those vertices lie on a path from s to t with a length less than or 

equal to Liim it. Note, however, that these paths need not be simple paths! Therefore, 
the resulting search space may contain dead-end branches. Here is the complete 

algorithm: 

Pass 1: 

(1) 6s(s) F  0 and for all v E V, v s, Os(v) oe . 
(2)T.,-V,F4-{s}. 
(3) If F is empty then stop. Otherwise, let u be a vertex in F for which 6s(u) is 

minimum 
(4) If Os(u) > Limit, stop. 
(5) For every edge e : u v, 

if v E T and Os(v) > 6s(u) + l(e) 
then Os(v) 6s(u) + 1(e) and F F + {v} . 

(6) T T — {u}, F F — { u} and go to step (3). 

Pass 2: 

(1) Ot(t) <- 0 and for all v E V, v t, Ot(v) 4- 00 . V' 4- O. 
(2)T4--V, F4-{t}. 
(3) If F is empty then stop. Otherwise, let u be a vertex in F for which Ot(u) is 

minimum. 
(4) If Ot(u) > Liimit, stop. 
(5) If Os(u) + Ot(u) Liimit then V' <- V' + { u}. 

(6) For every edge e : v u, 
if v E T and (5,(v) Liimit and Ot(v) > Ot(u) + 1(e) 

then at(v) 4-  6t(u) + 1(e) and F 4- F + { v} . 

(7)T4-T— {u}, F4-F— { u} and go to step (3). 

8.3.4. The Reduced Graph G' 

We now construct the Reduced Graph G' = (V', E'). The collection of vertices 

of G' is the set 1/' as defined in the previous section. We construct the reduced set of 
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edges E' by taking the edges from E, which join vertices from V'. An edge from E is 
placed in E' iff both its start and end vertex are in V': 

(1)E'4-ø. 
(2) For every edge e: u -› v from E: 

If u E V and v E V 
Then E' E' + { el . 

In our example of fig. 8.1, if we were looking for optimal solutions from Utrecht 
CS to Bodegraven, V' would surely include Woerden, but not Maastricht (Maastricht 
is typically 178 kilometers and 2 hours from Utrecht CS and 205 kilometers and 2:30 
hrs from Bodegraven). In E' we would have all trains connecting any two stations in 
V'. Obviously, the network G' is a restriction of G "around" the Idealized Solution. 
So, the graph G' is of the same type as G, in our case a discrete (dynamic) network. 
It is likely that the actual best solution (in G) will be in G'. In addition, G' will often 
be very much smaller than G. 

8.3.5. The search in the Reduced Graph G': first pass 

In G' we search for an optimal path from s to t. Let this solution be Tent.Sol. 
(Tentative Solution). This search can be carried out by using any particular search 
technique suitable for the type of graph (of G' and G), as long as it guarantees an 
optimal solution. In our case we could use the algorithm from chapter 4 (for a 
discrete network) or 6 (for a discrete dynamic network). If no solution is found, the 
Idealized Solution was based on information which was (far) too unrealistic, and 
cannot be used to define a feasible reduced graph, and we may have to resort to 
searching the entire graph G. In this case SRM is not successful in reducing the size 
of the search space. 

8.3.6. Verification of Optimality 

Let the length of Tent.Sol. be (1 + q) * 1(IS), where obviously q 0. Remember 
that Tent.SoL is a "real" solution, i.e. it describes a path in G', and thus in G, from s to 
t. However, although the path is optimal in G', we do not yet know whether it is also 
optimal in G. 

If q p, then Tent.SoL is also an optimal solution in G, i.e. by searching only in 
the reduced space G', we still found an optimal solution for the search in the entire 
space G, as we now shall prove by contradiction. Let us assume that there is in G a 
better solution: 

Sol2 : s = u0 -> u1 u2 -> u3 un-1 un  = t 

which is not entirely in G', i.e. 

3 i, 0 < i < n, such that u, G'. 

Let the length of Sol2 (which is a better solution than Tent. Sol.) be: 

l(So12) = (1 + r) * l(IS), where 0 :5_r<q5..p. 

Now let us consider the corresponding path of Sol2 in ISG: 

So/2HG : s = u0 -> u1 142 —> U3 ... 	—> un = t. 

Since in ISG every edge joining two vertices is replaced by an edge with the length of 
the shortest edge joining the two vertices, we know that 

kuj uj+i)tsG 5- kuj -) uji-i)G with 0 < j < n. 

So, 

l(Sol2IsG) Lc. 1(Sol2) 

But then 

1(Sol2IsG) < l(So12) = (1 + r) * l(IS) < (1 + q) * 1(IS) (l+p) * l(IS) = 

So, the length of the corresponding path in ISG is less than ',limit. Therefore all the 

vertices on the path So/2isG (and thus on the path So12), including ui, should have 

been in G', contradicting our assumption. 

If q > p, then G' may have been too "small", and a better solution may exist 

outside G', although this is not necessarily the case. Think of the case where we take 
p = 0, and keep in G' only the vertices on paths representing the Idealized Solutions 
in ISG. The length of the actual solutions in G along these paths will almost surely be 

larger than l(IS). 
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8.3.7. Repair: second pass 

In the last case, it is sufficient to setp to q in step (3) and calculate a new, larger 
reduced graph G". An optimal solution in G" is now guaranteed to be also an 
optimal solution in G, and therefore at worst we only need to cycle once. 

Let us justify the last statements: in G" we have all the vertices on paths 
representing Idealized Solutions (i.e. paths in ISG) of length (1 + q) * 1(IS) or less. 
Assume that the optimal solution in G is: 

Opt.Sol. : S = V0 —> V1 V2 —* V3 ... Vm —1 Vm = t. 

Its length must be at most the length of (the previously found) Tent. Sol. (which is also 
a solution in G), which is (1 + q) * 1(IS). The length of the corresponding path in ISG 
must be at most the "real" length (the length of the path in G), which is (1 + q) * 
1(IS), and by construction all the vertices v0, V2,..., vm  are in G". So, the value qn,„ in 
the second cycle must be at most q and the algorithm will stop. 

8.4. The choice of the coefficient p 

Let us consider the coefficient p in step (3) of SRM. In order to choose a value 
for p, we could use some heuristic taking into account some knowledge we have 
about the network. For instance we might know that the length of a real solution will 
be at most 140 percent of the length of its idealized solution, so we could set p to 
0.40. 

Ifp is chosen too small, SRM will almost surely cycle. This single repetition may 
prove costly: if q is large, i.e. if the Idealized Solution is very much better than the 
"real" solution in G', the graph G" may not be much smaller than G. When p is 
chosen too large, the reduced set of vertices V' will be large and little benefit will 
accrue from the use of SRM. 

It is not necessarily optimal to choose p so large that the single cycling of SRM 
never occurs. A smaller value of p could prevent cycling in most cases, and in these 
cases the search space could be considerably reduced. With such a smaller value of 
p, SRM will cycle only in some of the more extreme problems. Somewhere between 
a (too) largep and a (too) smallp lies an optimalp, which depends on the graph, the 
actual cost of searching it, and the distribution of search requests. Such an optimalp 
can be determined empirically, after gathering enough information about a 
particular application, and assuming that future usage of the system will be 
essentially similar to past usage. 
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Another approach is to setp to 0. This way only the vertices on the path of the 
Idealized Solution will be in G'. When we search G', we shall only find solutions 
along the idealized path. Effectively, we traverse the idealized path (from ISG) in G. 
The cost of traversing this path only will obviously be small, however, the resulting 
solution may be bad. It will be very probable that in step (6) q > p. Only if the 

Idealized Solution is totally realizable in G willp = q. In the second cyclep will have 
the value of a real solution along the idealized path. The advantage will be a smaller 

search space (a smaller G') if the real optimal solution is likely to be along the 

idealized path. The value of p in the second pass is determined using knowledge 
about a route which has some chance of being near to optimal. The disadvantage of 
this approach is that we shall almost always have to cycle once. 

8.5. Application 

In an application, the Idealized Skeleton Graph need to be built only once for a 
given network, independently of the problem at hand. SRM reduces the size of the 
graph to be searched specifically for each problem, and may result in an increased 
performance. SRM appears particularly useful when searching large graphs where 
the search for a solution can often be confined "near" the Idealized Solution, i.e. 
much of the graph need never be searched. The benefits of SRM increase if a 
network is searched several times, because not only optimal but also near optimal 
solutions are of interest, or because there are several criteria for optimality. Since 
SRM reduces the size of the space to be searched, each of the solutions of interest 
will be found more efficiently than if the entire initial search space had been 
searched. The sum of the savings brought when finding each solution of interest may 
be very much larger than the cost of applying SRM. Results are given in chapter 14. 
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9. Heuristic Search 

In order to further improve search efficiency we can make use of heuristics. One 
way to build an heuristic search algorithm is to make use of an heuristic function 
which gives for every vertex an estimate of the distance remaining to the goal vertex. 
A well-known algorithm for finding a minimum length path using heuristic estimates 
is A* (see [Ha, 1968]). Some generalizations of this algorithm have been elaborated 
in [Po, 1970], [Ha, 1974], [Me, 1984] and [Pe, 1979]. 

9.1. The A* search algorithm 

We shall first give a definition of the A* search algorithm. We shall use a 
notation similar to the notation we used previously. 

Consider a finite directed graph (K.  E), where V is the set of vertices and E the 
set of directed edges joining two vertices from V. Each edge e from E has a length 
1(e) 0. The two special vertices s and t of the graph are the starting and terminating 
vertices. We want to find a shortest directed path from s to t, where the length of a 
path is the sum of the lengths of its edges. The evaluation function f(v) is an estimate 
of the length of a minimum length path constrained to go through the vertex v. The 
function f(v) is composed of two parts: A(v) and h(v). A(v), the label of the vertex v, is 
the length of the best known path from s to v. h(v), the heuristic, is an estimate of the 
length of a minimum path from v to the goal vertex; we assume that h(t) = 0 for all 
heuristic functions h. The value of A(v) is determined during the propagation of the 
algorithm. The value of h(v) is given initially for every vertex. The evaluation 
function f(v) is composed as follows: 

f(v) = .t(v) + h(v). 

We now give the A* search algorithm. 

(1) ),(s) <- 0 and f(s) <- h(s). For all v E V, v # s, A(v) 4-  00 

(2) F { s} . 
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(3) If F is empty then stop, no path could be found. Otherwise, let u be a vertex in F 
for which f(u) is minimum. 

(4) If u = t, stop, a path is found. 
(5) For every edge e : u -> v, 

if A(v) > A.(u) + 1(e), 
then A(v) <- A(u) + l(e) and f(v) 4- A.(v) + h(v) and F <- F + { v} . 

(6) F 4- F - { u} and go to step (3). 

If in step (3), there are ties, then it makes sense to work first on the vertex which 
is estimated closest to the goal vertex. So, the vertex with the smallest value for h(v) 
should be chosen. Note that this way, the goal vertex, which obviously has an 
estimate of 0, will always be favoured in case of ties. 

Note that the only difference between the A* algorithm, and the improved 
Dijkstra algorithm described in chapter 3, is the introduction of the heuristic 
estimate h(v) and the absence of the collection T. The collection T cannot be used 
(in step (5)), because in the basic A* algorithm, a vertex may become the branching 
vertex u in step (3) multiple times, whereas in Dijkstra's algorithm this happened at 
most once for every vertex. We shall later see under which condition this can be 
avoided. 

9.2. Admissibility of A* 

It has been proven (see [Ha, 1968] or [Ni, 1980]) that if for every vertex v, h(v) 
is a lower bound (an underestimate) of the actual length of a minimum path from v 
to the goal vertex, then the algorithm A* is admissible, i.e. it always finds an optimal 
path. This is easily seen by the fact that the real length of a path cannot be less than 
an underestimate of its length. Once a complete path has been found in step (4), the 
length of this path is real, it contains no estimate. So, if all other (incomplete) paths 
have an underestimated length which is higher than the actual length of the 
(complete) path we have found, then none of the completed paths developed out of 
the incomplete paths, can have an actual length which is lower. 

9.3. Consistent heuristics 

Earlier we said that a vertex could become the branching vertex multiple times 
in the A* algorithm. For an example, consider the graph in example 9.1. In this 
example the estimates (the h value of a vertex) are encircled. By inspection, we note 
that in this example, all estimates are in fact underestimates. Suppose we want to 
find a minimum length path from s to t. 

Fig. 9.1. 

The first vertex to become the branching vertex is s. From s, v 1 is labeled 4 and 

f(vi) becomes 5. A(v0) becomes 2 and f(v0) becomes 6. Then v1 becomes the 
branching vertex since it has the lowest evaluation value. t is labeled 8 and f(t) 
becomes 8. v0 does not get relabeled: h(v0) + A(v0) via v1  is 4 + 5 = 9, which is higher 
than the previous value of 6. Then v0 becomes the branching vertex. From v0, v1 does 
get relabeled to 3 (even though it had been the branching vertex once already) and 
its evaluation value becomes 4. Consequently v1 is put in F again and it becomes the 
next branching vertex. So, even though the heuristic estimates are underestimates, a 
vertex can become the branching vertex multiple times. 

A vertex can become the branching vertex multiple times when the heuristic 
evaluation function (the function which is composed of the label and the heuristic 
estimate) is not monotonically non-decreasing along the path from s to t. If an 
heuristic evaluation function is monotonically non-decreasing along any path in the 
graph, then the heuristic is called monotone or consistent (see [Ni, 1980]). A 
monotone heuristic evaluation function translates into the following consistency 
assumption: 

Consider an edge e : u -> I/ , then 

h(u) - h(v) 5 l(e). 

In example 9.1, the consistency assumption is not valid for the edge s -> v1 and 
for the edge v0 -> vi. The estimate for vertex v1 is not consistent with the estimates of 
s and v0, considering the lengths of the edges s -> v1  and v0 -> v1 respectively. 
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It has been proven ([Ni, 1980]) that given an heuristic evaluation function, if the 
consistency assumption holds for all edges e of a graph, then A* using this function 
will never make a vertex the branching vertex more than once. A vertex that has been 
a branching vertex need never be tried for relabeling again. The label of the vertex 
becomes permanent in step (3). 

9.4. A* as a modified Dijkstra algorithm 

If we make sure that an heuristic function gives an underestimate, and 
moreover, if the heuristic function is consistent, then the only difference between A* 
and the improved Dijkstra algorithm presented in chapter 3, is the use of the 
heuristic function in the evaluation of vertices in step (3). 

9.5. Using the results from SRM in A* 

As a result of the determination of the search space in SRM (the determination 
of the graph G'), for each vertex v in the search space we have an estimate of its 
distance from the source vertex (6,(v)) , and an estimate of the distance remaining to 
the goal vertex (6g(v)). If we make sure that these estimates are underestimates, and 
that these estimates are consistent, then we may use these estimates in the 
evaluation step of the algorithms to search discrete and discrete dynamic networks 
(see chapters 4 and 6). 

It is easily seen that the estimates obtained from SRM are underestimates by the 
fact that in the Idealized Skeleton Graph (see chapter 8), all parallel edges are 
replaced by one edge with a length corresponding to the length of the shortest of the 
parallel edges. So, when using one of the parallel edges in the real graph, its length 
is at least the length of its representative edge in ISG. Since the estimates are 
determined by searching for optimal paths in ISG, these estimates must be 
underestimates of the real optimal paths. 

The fact that the estimates from SRM are consistent is proven by contradiction. 
Suppose that for some edge e: u --) v (e E E'), with u and v part of the search space 
(the reduced graph), the consistency assumption does not hold, i.e. : 

h(u) — h(v) > 1(e) 	(1). 

Where h(u) and h(v) are the estimates of the distance remaining to the goal vertex t 
from u and v respectively. These estimates were found by searching ISG for optimal 
paths (Os(u), dg(u)). So, we know that there exists a path in ISG from u to t: 

Pu, t = 	t, with 1(Pu, t) = h(u) minimum 

Similarly, there exists a path in ISG from v to t: 

Pv, t = 	t, with l(Pv, t) = h(v) minimum 

Using the representative of e in ISG, e': u --> v, and using Pv, t it is then possible to 
construct the following path from u to t in ISG: 

Pot = u, 	t. 

By the definition of ISG we know that 

l(e') 5_ 1(e) 	(2). 

Obviously, 

/(Popt) = l(Pv, t) + l(e'). 

By (2) and since l(Pv,t) = h(v) we get: 

/(Popt) = h(v) + 1(e') < h(v) + 1(e). 

By (1) we know that 

h(v) + l(e) < h(u). 

But then 

l(1'014 < h(v) + 1(e) < h(u). 

So, we have constructed a path from u to t in ISG for which the length is less that 
h(u). Since h(u) is minimum, this is a contradiction. So it must be that h(u) -

h(v) l(e). 

9.6. Using heuristics in DYNET: DYNET* 

Now that we have shown that the estimates that we get from SRM are consistent 
and in fact underestimates, we can easily adapt our DYNET algorithm for searching 
a discrete dynamic network to include heuristic estimates. All we need to do is to 
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change the evaluation in step (3). Furthermore, only the vertices that were 
determined to be in the search space using SRM, are considered in the search. For a 
detailed description of the other steps of the algorithm, see chapter 6. We shall refer 
to this algorithm as the DYNET* algorithm. 

Consider a discrete dynamic network consisting of the graph G = (KE) and the 
connection cost function CON. The maximum value of CON at a vertex u is 
maxiCON(u), which is non-zero. The two special vertices s and t of the network are 
the starting and terminating vertices. We want to find a legal path from s to t in our 
discrete dynamic network, where the end value of the path is minimum and given 
this end value, the start value of the path is maximum and at least Tstart. 

Let the collection be the collection of vertices that were determined to be in 
the search space using SRM (the reduced set of vertices). Furthermore let 6,(v) 
denote the estimate of the distance from s to v, determined using SRM, and let 
Ot(v) denote the estimate of the distance from v to t. 

Pass 1: 

(1)4S) Tstart and for all vEV,v# s, ,l(v) 4- C41 . 

Create a partial path P0 consisting of s only, end(P0) 4-  Tstart: 

For all v E V', w(v, u) = 00 for each neighbour u of v, u E V . 
(2) F {P0 }. 
(3) Let Pm  be a partial path s, e0, 	ei -1, uj  in F for which end(Pm) + Mu) is 

minimum; if F is empty then stop, no complete path could be found. 
(4) If uj = t, stop, Pm  is a complete path with an optimal end value. 
(5) If end(Pm) <,l(ui) + maxiCON(u). 

then for every relevant edge ej  : uj -> uo-i; uj-F1 E V' : 
if ,l(uj+i) > end(ej) 
then yl(uj+i) F  end(ej) 
if end(ej) < A(u j+i) + maxiCON(u j+i) 
then create a partial path Pn  = s, e0, 	uj-4, ej-1, uj, ej, uj+1 and 

F 4-- F + { Pn} . 
if end(ej) < w(uj+i, ui) 
then w(uj+i, ui) end(ej). 

(6)F 	— {Pm } and go to step (3). 

A relevant edge is defined as follows: given a partial path u0,..., 	uj and a 
vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: u j  uj+1 for 
which the following two ordered conditions hold: 
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(1) start(ej) end(ej-1) + CON(uj, e j _i, ej), 
(2) end(ej) < end(emm) + maxiCON(uj+i), 

where end(emm) is the minimum end value of any edge satisfying (1). 

Pass 2: 

(1) ic(t) F  A(t) and for all v E V' , v t, K(V) 	. 

Create a partial path P0 consisting of t only, start(P0) 
(2) F 4-- { P0} . 
(3) Let Pm  be a partial path up..., uk-i, 	t in F for which start(Pm) — s(uj) is 

maximum 
(4) If uj = s, stop, Pm  is an optimal complete path. 
(5) If start(Pm) > K(uj) — maxiCON(u) 

then for every relevant edge ej-1 : uj-1 -> uj; 
with ui-1 E V and co(uj, uj-1) start(Pm) : 

if ic(uj-1) < start(ej-1) 
then K(u j-1) start(ej-i) 
if start(ej-1) > ic(uj-1) — maxiCON(u j-1) 
then create a partial path Pn = uj-1, es-i, 	ek-1, t and 

F4-F+ {Pn} . 
(6) F F — { Pm} and go to step (3). 

A relevant edge is defined as follows: given a partial path up  ej, 	uk and a 
vertex ui-1, then the relevant edges from uj-1  to u1  are the edges ej-1: uj-1 -> uj  for 
which the following two ordered conditions hold: 

(1) end(ej-1) start(ej) — CON(uj, ej-1, 
(2) start(ej-1) > start(emax) — maxiCON(u)-1), 

where start(emax) is the maximum start value of any edge satisfying (1). 
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10. Offset Vertices 

An excellent way to decrease the amount of search necessary to find an optimal 
path in a graph, is to make sure that the graph that is being searched is as small as 
possible. In a graph, some categories of vertices need not be considered during 
search. In this chapter we describe one such category: the offset vertices. An offset 
vertex is a vertex which lies between exactly two other vertices. A path leading to 
such a vertex can only be continued to one vertex, and consequently the vertex does 
not need to be considered during search if it is neither the starting vertex nor the 
terminating vertex. The fewer vertices need to be considered during search, the 
faster the search will be. We also describe how offset vertices can be determined in 
(directed) graphs and in discrete dynamic networks. Furthermore we describe 
adjustments to the search strategies for these graphs, in case the starting or 
terminating vertex is an offset vertex. 

10.1. Offset vertices 

Let us consider the graph in fig. 10.1. If we are searching this graph using, say, 
Dijkstra's algorithm, then whenever we arrive at vertex v2, which lies between exactly 
two other vertices (v1 and v3), we can only continue our path by going to v3 if we 
arrived at v2 from vl, or to vertex v1 if we came from v3. There is no other choice since 
continuing the path back to the vertex we came from is obviously useless when we 
are searching for an optimal path. Unless v2 is the starting vertex or the terminating 
vertex, as soon as we are going from v1 to v2, adding a length of 2, we know for sure 
that from v2 we shall continue to v3, adding a length of 3, giving a total of 5 to reach 
v3 from vi. Similarly, if we are going from v3 to v2, adding a length of 3, we know for 
sure that from v2 we shall continue to vi, adding a length of 2, giving a total of 5 to 
reach v1 from v3. So, if v2 is neither the starting vertex nor the terminating vertex, 
when searching the graph of fig. 10.1, we can equivalently search the graph of fig. 
10.2, which is smaller. The vertex v2 has been removed and has become an offset 

vertex. In fig. 10.2, if v2  is the starting vertex or the terminating vertex, we need to 
remember that v2 (the offset vertex) is lying between v1 and v3  (the node vertices), 
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Fig. 10.3. Fig. 10.4. 

Vi 	 Vi 

V2 

V4 V3 

V4 

Fig. 10.1. 	 Fig. 10.2. 

separated by a length of 2 from v1 and by a length of 3 from v3 (the distance offsets). 
We shall now define the concepts of offset vertices and distance offsets more 
precisely. 

10.2. Offset vertices in undirected graphs 

We can include offset vertices in the definition of a (weighted), undirected 
graph as follows. A graph G with offset vertices is a structure which consists of three 
sets and a function: 

(1) a set of node vertices Vnode, 
(2) a set of offset vertices Voff, 
(3) a set of (undirected) edges E, 
(4) a non-negative, real-valued function, called the distance offset function DIS, 

having two vertices as arguments: one offset vertex and one node vertex. 

Each edge e from E is incident to the elements of an unordered pair of node vertices. 
Each edge e is assigned a non-negative length 1(e). With each offset vertex v E Voff, 
we associate 2 values, yi(v) and y2(v), which denote the node vertices connected to 
the offset vertex. The distance offset function DIS specifies the length separating an 
offset city and the node cities connected to it. 

In the example of fig. 10.2 I7node  = {vi, v3, va}, Voff = {V2}, and E = {e12, e3, e4}. 
Furthermore: 

Yl(V2) = Vi, 

y2(V2) = V3, 

and 

DIS(v2, vi) = DIS(vi, v2) = 2, 
DIS(v2, V3) = D1S(V3, V2) = 3. 

103. Offset vertices in directed graphs 

In a directed graph, the length separating two vertices may depend on the 
direction. For example, in fig. 10.3, v2 lies between exactly two other vertices, v1 and 

v3, and thus can be made an offset vertex. The length of the edge from v1 to v2 is 3, 

whereas the length of the edge from v2 to v1 is 2. So, when we introduce offset 
vertices to directed (weighted) graphs, the order of the arguments of the DIS 

function becomes important. In fig. 10.4 v2 has been made an offset vertex. The DIS 

function becomes: 

DIS(vi, v2) = 3, 
DIS(v2, vi) = 2, 
DIS(v3, v2) = 4, 
DIS(v2, V3) = 2. 

103.1. Transforming a graph 

In this paragraph we describe the steps to transform a directed, weighted graph 
into a graph with offset cities, which can be equivalently, but more efficiently 
searched for an optimal path. 
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e0: u0 -0 v, 

v -0 
e2: u1  -0 v, 
e3: v -0 u0. 

e0 	 e1 	 e0 

u0 	e3 	 e2 ui u0 	 e3 	 e2 
	ui 

Fig. 10.5. 	 Fig. 10.6. 

First we make the observation that when we are searching for an optimal path in 
a graph, it makes no sense to have self-loops and parallel edges. A self-loop takes us 
back to the same vertex we came from at an extra cost, which will not give an optimal 
path. When parallel edges exist between two vertices, for an optimal path only a 
shortest edge of the parallel edges will be used to go from one vertex to the other, so 
all but a shortest of the parallel edges connecting a specific pair of vertices can be 
dropped. Therefore we may remove all self-loops and parallel edges. 

For each vertex, if the number of arriving edges (the in-degree of a vertex 
v, din(v)) and the number of departing edges (the out-degree of a vertex v, dout(v)), 
are both exactly two, then this vertex lies between exactly two other vertices and we 
may make this vertex an offset vertex. Suppose that vertex v lies between u0 and ui 
(see fig. 10.5), and that 

When we make v an offset vertex, u0 and ui become the node vertices which are 
connected to the offset vertex: 

yi(v) u0, 

y2(v) 4- ui: 

We remove e0  and e1  from the graph and replace them by one compound edge from 
u0 to ui. The length of this new edge becomes the sum of the lengths of e0 and el: 

eQi: u0 
l(e0i) 	l(e0) + 1(ei). 
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Similarly, we remove e2 and e3 from the graph and replace them by one compound 
edge from ui to u0. The length of this new edge becomes the sum of the lengths of 

e2  and e3: 

ui -ou0, 
l(ei0) 	l(e2) + l(e3). 

The (length) information of the separate edges we removed are stored in the DIS 

function: 

DIS(u0, v) 4- 1(e0), 
DIS(v, ui) F-1(ei), 
DIS(ui, v) 4- l(e2), 
DIS(v, u0) l(e3). 

Note that, since we must be able to distinguish between DIS(u0, v) and 

DIS(ui, v) (representing the information of edge e0  and e2), u0 and ui must not be the 

same vertex! We must not allow new self-loops to occur. Since we already removed 
self-loops, we know for sure that v will never be the same vertex as u0 or ui if we do 

not allow new self-loops to occur. 

It may be, that the vertex v that we have made an offset vertex had already been 
made a node vertex for some other offset vertex v.. Since an offset vertex is 
connected to exactly two node vertices, and since v is connected to exactly two node 
vertices, vo must lie either between u0 and v, or between v and ui. So, either 

Yi(vo) = u0 and y2(v = v, 

or 
yi(vo) = ui and y2(v0) = v. 

In the first case (see fig. 10.6), ui replaces v as the node city which is connected to 

Vo: 

Y2(v.) F ui: 

In the second case u0 replaces v as the node city which is connected to v.: 

Y2(vo) F  u0. 

Furthermore we need to change the DIS function to give the distances from v0 to the 

new node city to which it is connected instead of v. For the first case: 
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DIS(v., ui) <- DIS(v., v) + DIS(v, 
DIS(ui, v.) 4-  DISOil,v) DIS(v, 

For the second case: 

DIS(vo, u0) 4- DIS(vo, v) + DIS(v, u0), 
DIS(u0, v.) <- DIS(u0, v) + DIS(v, 

10.3.2. The algorithm to transform a directed, weighted graph 

We now give a formal definition of the algorithm to transform a directed, 
weighted graph into a directed, weighted graph with offset cities: 

Consider a finite, directed, weighted graph G = 	E) . We shall construct an 
equivalent graph with offset vertices G' = (Vnode, Voff, E', DIS), where Vn.de is the 
collection of node vertices, Voff the collection of offset vertices, E' the collection of 
directed edges joining two vertices from Vnode,  and DIS is the distance offset function 
having two arguments: a node vertex and an offset vertex. Each edge e from E' has a 
length l(e) 0. Furthermore, with each offset vertex v E Voff, we will associate 2 
values, yi(v) and 72(v), which denote the node vertices which are connected to the 
offset vertex. 

(1) Voff <- 0, Vnode F  O. 
(2) E' 4- E. Remove from E' all self-loops, and all parallel edges but the shortest 

ones. 
(3) For each vertex v E V, 

if chn(v) = dout(v) = 2 then 
Suppose 

e0: u0 v, 

v 
e2: ui 	v, 

e3: u0. 
if u0 # ul 

yi(v) u0 and 72(V) 
Voff 4-  Voff { V }. 
Vnode F  Vnode 	UO, ui }. 
E' <— E' — { e0, ei, e2, e3  }. 

Create an edge e0i: u0 	/(e03) F 1(e0) + l(ei). 
Create an edge ei0: ui 	/(e30) F  /(e2) + 1(e3). 
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E' 4-- E' + { e0i, ei0 }. 
DIS(u0, v) 1(e0), 
DIS(v, ui) 1(ei), 
DIS(ui, v)  <- l(e2), 
DIS(v, u0) F  l(e3). 
if v E Vnode then there exist offset vertices vo  for which v was a node 

vertex. For each such offset vertex v.: 
if 71(v.) = u0 and y2(vo) = v. 

then y2(vo) ui, 
DIS(v ui) DIS (v 0, v) + DIS(v, 
DIS(ui, vo) DIS(ui, v) + DIS(v, vo). 

else 72(vo) 4-  u0, 
DIS(vo, u0) <- DIS (v., v) + DIS(v, u0), 
DIS(u0, v0) 4-  DIS(u0, v) DIS(v, v.). 

Vnode Vnode 	V /. 
else Vnode K.& + V }. 

else Vnode F  Vnode { V }. 

10.3.3. Adapting Dijkstra's algorithm to offset vertices 

Now that we have defined a graph with offset vertices, and an algorithm to 
transform a weighted, directed graph into a graph with offset vertices which can be 
searched more efficiently for an optimal path, we adapt a graph search algorithm to 
handle such a graph with offset vertices. As a basis we use the improved version of 
Dijkstra's algorithm as defined in chapter 3. 

As we saw in section 10.1, we only need to consider offset vertices during search 
if an offset vertex is either the starting vertex or the terminating vertex. We shall look 

at each case in turn. 

10.3.3.1. An offset vertex as the starting vertex 

In the definition of the improved Dijkstra algorithm (see section 3.1.2.3.) the 

starting vertex s is handled in step (1): the starting vertex is labeled with 0 and is put 
in the frontier. Since it is the only vertex that is put in the frontier, at step (3) the 
starting vertex is selected as the branching vertex and in step (5) all its neighbours 
are visited (labeled and put in the frontier). Finally, the starting vertex is removed 
from the frontier. If the starting vertex is an offset vertex, we do not label it, but 
instead, the node vertices adjacent to the offset vertex are labeled with their 
respective distance from the offset vertex. The information of the edges departing 
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from the offset vertex can be recovered by using the y values of the offset vertex to 
determine to which node cities it is connected, and by using the DIS function to 
determine the length of the connecting edges: 

A(yi(s)) DIS(s, yi(s)), 
A(y2(s)) DIS(s, y2(s)). 

Since a vertex is always removed from the frontier as soon as all of its neighbours 
have been visited, we do not bother to actually put the source vertex itself in the 
frontier. Instead, after we have labeled its adjacent node vertices, we put those in the 
frontier. The offset vertex is temporarily treated as a node vertex by visiting its 
adjacent node vertices. 

10.33.2. An offset vertex as the terminating vertex 

When the terminating vertex t is an offset vertex, it is treated as a node vertex 
which is being labeled when one of its adjacent node vertices becomes permanent. 
We can recognize a node vertex u adjacent to the offset vertex by comparing it to the 
y values of the offset vertex. We can recover the information about the edge 
connecting the node vertex and the offset vertex by using the DIS function. With this 
information we are able to label the offset vertex: 

if u = yi(t) or u = y2(t): 
if A(t) > A(u) + DIS(u, t) 
then A(t) FA(u) + DIS(u, t) 

We do actually have to treat the offset vertex as a node vertex and put it in the 
frontier. If we would follow the same scheme as when the starting vertex is an offset 
vertex, i.e. label the node vertices with the distance from its neighbours plus the 
distance the offset vertex is from the node vertex, then we would get an incorrect 
answer in a case like fig. 10.7. From s we label u0 with 5. If we would label u0 with 
5 + 4 = 9 and stop when it becomes the branching vertex the next iteration, we 
would miss the shorter path via ui. Because we label u0  with a distance greater than 
the actual distance, there may be neighbours of u0 which have a smaller actual label 
than u0, and could result in a shorter route, if we would label them. 

10.3.33. An offset vertex as starting vertex and terminating vertex 

When both the starting vertex and the terminating vertex are offset vertices, a 
special case arises when they are both adjacent to the same pair of node vertices. 
This case must be handled in a separate step. The distance separating the two offset 
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Fig. 10.7. 

vertices must be calculated by going from one offset vertex to the other directly, 
without passing a node vertex. The different cases are shown in fig. 10.8: 

yi(s) = y 1(0, and y2(s) = y2(t) 
DIS(yi(s), s) < DIS(yi(t), t) 
A(t) 4-- DIS(yi(t), t) — DIS(yi(s), s) 

yi(s) = yi(t), and y2(s) = y2(t) 
DIS(yi(s), s) > DIS(yi(t), t) 
A(t) <- DIS(y2(t), t) — DIS(y2(s), s) 

yi(s) = y2(t), and y2(s) = yi(t) 
DIS(yi(s), s) < DIS(y2(t), t) 
A(t) DIS(y2(t), t) — DIS(yi(s), s) 

yi(s) = y2(t), and y2(s) = yi(t) 
DIS(yi(s), s) > DIS(y2(t), t) 
A(t) <- DIS(yi(t), t) — DIS(y2(s), s) 	

Fig. 10.8. 

We must handle this special case as above. If we calculated the distance by first 
going from one offset vertex to one of its adjacent node vertices, and then from the 
node vertex to the other offset vertex for example, then the solution would not be 
optimal. 

10.3.4. The Dijkstra algorithm for searching a graph with offset vertices 

We now give a formal definition of Dijkstra's algorithm, adapted to handle an 
offset vertex as starting vertex or terminating vertex. An offset vertex as starting 
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vertex is handled in step (1). An offset vertex as terminating vertex is handled in step 
(6). The special case of both the starting vertex and the terminating vertex as an 
offset vertex between the same pair of node vertices is handled in step (2). The other 
steps are similar to the original definition of the improved Dijkstra algorithm (for an 
explanation of the different steps see chapter 3). 

Consider a finite directed weighted graph with offset vertices, G = (Vnode, 

Vo ff, E, DIS), where Vnode is the collection of node vertices, Voff the collection of 

offset vertices, E the collection of directed edges joining two vertices from Vnode, and 

DIS is the distance offset function having two arguments: a node vertex and an offset 

vertex. Each edge e from E has a length 1(e) ..›_. 0. With each offset vertex v E Voff, we 
associate 2 values, yi(v) and y2(v), which denote the node vertices the offset vertex is 
connected to. The two special vertices s and t of the graph are the starting and 

terminating vertices (each vertex either a node or an offset vertex). We want to find 
a shortest directed path from s to t, where the length of a path is the sum of the 

lengths of its edges. 

(1) for all v E Vnode, A(v) <- 00 

if t E Voff then A(t) .- 00 . 
if s E Vnode  then A(s) 4-  0 and F *- { s } . 
else A(yi(s)) 4-  DIS(s, yi(s)) , 

A(y2(s)) 4- DIS(s, y2(s)) 
F 4- { yi(s), y2(s) } . 

(2) if s E Vo ff and t E Voff, 
if yi(s) = Mt) and y2(s) = y2(t), then 

if DIS(yi(s), s) < DIS(yi(t), t), 
then .(t) 4,- DIS(yi(t), t) - DIS(yi(s), s) 
else A(t) 4-  DIS(y2(t), t) - DIS(y2(s), s) 
F4-F+{t}. 

if yi(s) = y2(t) and y2(s) = yi(t), then 

if DIS(yi(s), s) < DIS(y2(t), t), 
then A(t) 4- DIS(y2(t), t) - DIS(yi(s), s) 
else A(t) <- DIS(yi(t), t) - DIS(y2(s), s) 
F.t-F+{t}. 

(3) T4- Vnode. 
(4) let u be a vertex in F for which A(u) is minimum; if F is empty then stop, no path 

could be found. 
(5) if u = t, stop, an optimal path has been found. 

(6) if t E Voff, and u = yi(t) or u = y2(t):  

if A(t) > A(u) + DIS(u, t) 
then A(t) <- A(u) + DIS(u, t), F <- F + { t } . 

(7) for each edge e E E, e: u - v, 
if v E T and A(v) > A(u) + l(e) 
then A(v) <- A(u) + 1(e) and F4- F + { v } . 

(8)T*-T--{u}, F.t-F-{u}andgotostep(4). 

10.4. Offset vertices in discrete dynamic networks 

Introducing offset vertices in discrete dynamic networks is more complicated. In 
a discrete dynamic network, an edge has discrete start and end values. Parallel edges 
may have different start and end values. Even parallel edges with the same start and 
end values may have different CONnection characteristics. Therefore we cannot 
simply remove parallel edges. Since, as in a directed weighted graph, a self-loop 
takes us back to the vertex we came from at an extra cost, self-loops may always be 
removed. 

When we introduce offset vertices in a graph, we actually remove a vertex and 
the edges connected to the (offset) vertex, and replace these edges by edges directly 
connecting the two node cities. Since in a discrete dynamic network the information 
of the start and end values of the edges connected to the offset vertex must not be lost 
(we need to know them when the offset vertex is the starting or the terminating 
vertex), we need to extend our graph by two functions instead of one: one giving the 
end values of the edges arriving at an offset vertex, and one giving the start values of 
the edges departing from the offset vertex. We now give a formal definition of a 
discrete dynamic network with offset vertices. 

A discrete dynamic network with offset vertices is a structure which consists of 
three sets and three functions: 

(1) a set of node vertices Vnode, 
(2) a set of offset vertices Voff, 
(3) a set of edges E, 
(4) a non-negative, real-valued function, called the connection function CON, 

having three arguments: a node vertex and two edges, 
(5) a non-negative, real-valued function, called START, having three arguments: an 

offset vertex, a node vertex and an edge, 
(6) a non-negative, real-valued function, called END, having three arguments: a 

node vertex, an offset vertex and an edge. 
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Each edge e from E is incident to the elements of an ordered pair of node vertices. 
With each edge e we associate two values: a start value start(e) and an end value 
end(e). The connection function CON gives the required margin for a specific 
connection (for a more thorough discussion of a discrete dynamic network, see 
chapter 5). With each offset vertex v E Kff, we associate 2 values, yi(v) and y2(v), 
which denote the node vertices the offset vertex is connected to. The START and 
END functions give the start and end values of the edges connected to offset vertices. 

10.4.1. Transforming a discrete dynamic network 

In this paragraph we describe steps to transform a discrete dynamic network 
into a discrete dynamic network with offset vertices, which can be equivalently, but 
more efficiently searched for an optimal path. 

Since we cannot remove parallel edges, we cannot test the in- and out-degree to 
determine whether a vertex lies between exactly two other vertices. Instead, we 
explicitly test whether all edges which arrive at an offset vertex come from exactly 
one start (node) vertex, and have a connecting edge to a unique end (node) vertex, 
and whether all edges which depart from an offset vertex go to exactly one end 
(node) vertex, and have a preceding (connecting) edge from a unique start (node) 
vertex. In a railway services network, this translates to the condition that each train 
arriving at an offset station must come from a unique previous station, and there 
must exist a departing train to a unique next station, which forms a connection, and 
that each train departing from an offset station must go to a unique next station, and 
there must exist a train from a unique previous station, which forms a connection. 
Suppose vertex v is such a vertex (see fig. 10.5). Precisely, a vertex v can be made an 
offset vertex if we have: 

We may then make v an offset vertex. The node vertices which are connected to v are 
u0 and ui: 

yi(v) u0, 
y2(v) ul. 

Each pair of connecting edges ei and ei+i, connecting u0 and v, and v and ui 
respectively, is removed from the graph and replaced by one compound edge e0i 

from u0 to ui, per connecting pair. This edge becomes the start value of ei and the end 
value of e;+1: 

e0i: u0 --> 

start(e0i) start(e;), 
end(e0i) end(ei+0. 

The end value of e, at v and the start value of ei+1 at v (which correspond to the arrival 
and departure at the offset vertex) are stored in the START and END functions, 
respectively: 

END(u0, v, e0i) 4-- end(e,), 
START(v, ui, e0i) start(ei+i). 

All edges e which formed a connection with ei at u0 must also form a connection with 

e0i at u0: 

For each edge e for which CON(u0, e, ei) is defined: 
CON(u0, e, e0i) 4-- CON(u0, e, 

All edges e which formed a connection with ei+1 at ui must also form a connection 

with e0i at ui: 

For each edge e for which CON(ui, 	e) is defined: 

CON(ui, e0i, e) CON(ui, 	e). 

Similarly, each pair of connecting edges ej  and ej+i, connecting ui and v, and v 
and u0 respectively, is removed from the graph and replaced by one compound edge 
ei0 from ui to u0, per connecting pair. This edge becomes the start value of ej and the 
end value of ej +1: 

ui -> u0, 
start(ei0) 4-  start(ej), 

if there exist two vertices u0 and ui, u0 v, ui # v, u0 
such that 

for all edges ek: up  -> v we have up  = u0 or up  = ui, and 
for all edges el: v -0 ug  we have ug  = u0 or ug  = ui, and 

if each edge e,: u0 -> v, has a connecting edge 	v -0 ui, with u0 # ut, 
and each edge ei+1: v -> ui, has a preceding edge ei: u0 -o v, 

such that 
start(ei+i) end(e,) + CON(v, 

and if each edge ej: ui -' v, has a connecting edge ej+i: v u0, 
and each edge ei +1: v -o u0, has a preceding edge ej: ui -> v, 

such that 
start(ej+i) 	end(ej) + CON(v, ej, ei+t), 
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end(ei0) F  end(ej+1). 

The end value of ej at v and the start value of ei+1 at v are stored in the START and 

END functions, respectively: 

END(ui, v, ei0) 4—  end(ej), 
START(v, u0, ei0) start(ej+i). 

All edges e which formed a connection with ej  at ui must also form a connection with 

ei0 at ui: 

For each edge e for which CON(ui, e, ej) is defined: 
CON(ui, e, ei0) F  CON(ui, e, ej). 

All edges e which formed a connection with ej+1 at u0 must also form a connection 

with ei0 at u0: 

For each edge e for which CON(u0, ej+i, e) is defined: 

CON(u0, ei0, e) F CON(u0, ej+1, e). 

Note that since the START and END functions have an edge as third parameter, 
the two (node) vertex parameters can be allowed to be the same vertex. The edge 
parameter specifies the direction. So, we may allow new self-loops to occur. This 
means that we do have to make sure that neither u0 nor ui is the same vertex as v (in 
this case v would become both an offset vertex and a node vertex at the same time, 
which cannot be allowed). 

It may be, that the vertex v that we have made an offset vertex had already been 
made a node vertex for some other offset vertex v.. Since an offset vertex is 
connected to exactly two node vertices, and since v is connected to exactly two node 
vertices, vo  must lie either between u0 and v, or between v and u1. So, either 

Yi(vo) = u0 and y2(vo) = v, 

or 

yi(vo) = ui and y2(vo) = v. 

In the first case (see fig. 10.6), ui replaces v as the node city which is connected to 

vo: 

72(vo) ui. 
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In the second case u0  replaces v as the node city which is connected to v.: 

72(v0) F  u0. 

Furthermore we need to add START and END values at vo  for the new 
(compound) edges we created earlier. In the first case for the edges e0i and ei0 that 
we created replacing the edges ei and ej+1 between u0 and v. In the second case for 
the edges e0i and ei0 that we created replacing the edges ei+t and ej between v and 
Ui. 

In the first case, the END value of the edge e0i at vo  becomes the END value of 

ei at v., and the START value of e0i at vo  becomes the START value of e, at vo. 
Furthermore the END value of the edge ei0 at vo becomes the END value of ej+1 at 
vo, and the START value of ei0 at vo becomes the START value of ej+1 at vo: 

END(u0, vo, e0i) 4- END(u0, v0, e1), 
START(vo, ui, e0i) F  START(vo, v, ei), 
END(ui, v0, ei0) F  END(v, v., ej+i), 
START(vo, u0, ei0) F  START(vo, u0, ej+i). 

In the second case, the END value of the edge ei0 at vo  becomes the END value 
of ej at vo, and the START value of ei0 at vo becomes the START value of ej at vo. 
Furthermore the END value of the edge e0i at vo  becomes the END value of ei+1 at 
vo, and the START value of e0i at vo  becomes the START value of e, +1 at vo: 

END(ui, v0, ei0) F  END(ui,vo, e j), 
START(vo, u0, ei0) START(vo, v, e'), 
END(u0, v., e0i) END(v, v., ei+i), 
START(v., ui, e0i) 4- START(v 0, 

10.4.2. The algorithm to transform a discrete dynamic network 

We now give a formal definition of the algorithm to transform a discrete 
dynamic network into a discrete dynamic network with offset cities, which can be 
equivalently but more efficiently searched for an optimal path. 

Consider a finite discrete dynamic network consisting of the graph (KE) and the 
connection function CON. We shall construct a discrete dynamic network with offset 
vertices, consisting of Vnode, Voff, E', CON, START, END. Vn0de is the collection of 
node vertices, Voff the collection of offset vertices, E' the collection of directed edges 
joining two vertices from Vnode, CON the connection function. The START and END 
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functions give the start and end values of the edges connected to offset vertices. With 
each offset vertex v E V.ff, we associate 2 values, yi(v) and y2(v), which denote the 
two different node vertices which are connected to the offset vertex. 

(1) Vat. 4- 0, Vnode <- O. 
(2) E' 4-- E. Remove from E' all self-loops. 
(3) for each vertex v E V, 

if there exist two vertices u0 and ui, u0 # v, ui # v, u0 # ui, 
such that 

for all edges ek: up  -' v we have u, = u0 or up  = ui, and 
for all edges ei: v uq  we have uq  = u0 or uq  = ut, and 

if each edge ei: u0 -> v, has a connecting edge 	v 	with u0 
and each edge ei+i: v -' ui, has a preceding edge u0 v, 

such that 
start(ei+i) 	end(ei) + CON(v, ei, 

and if each edge ej: ui v, has a connecting edge ej+i: v -' u0, 
and each edge ej+i: v u0, has a preceding edge ei: ui  v, 

such that 
start(ei+i) 	end(ei) + CON(v, ej, ej+1), 

then yi(v) 4-  U0 and y2(v) ui. 
Voff Voff 	v }. 

Vnode 4- Vnode 	UO, ui }. 

for each pair of edges ei  and ei+1 as described above: 
E' 	E' - { ei, e,+1}. 
create an edge e0i: u0 -> 

start(e0i) F  start(e;), 
end(e0i) end(ei+i), 
E' E' + e0i 1, 
END(u0, v, e0i) end(ei), 
START(v, ui, e0i) F start(ei+r). 
for each edge e for which CON(u0, e, ei) is defined: 

CON(u0, e, e0i) CON(u0, e, ei). 
for each edge e for which CON(ui, e;+t, e) is defined: 

CON(ui, e0i, e) CON(ui, 	e). 
for each pair of edges ej and ej+1 as described above: 

E' E' - { ej, ejn. }. 
create an edge ei0: ut -> u0, 

start(ei0) F  start(ej), 

end(ei0) F  end(ej+0, 
E' E' + { ei0 }, 
END(ui, v, ei0) F end(ej), 
START(v, u0, ei0) F start(ei+1): 
for each edge e for which CON(ui, e, ej) is defined: 

CON(ui, e, ei0) CON(ui, e, es). 
for each edge e for which CON(u0, ej+i, e) is defined: 

CON(u0, et0, e) F  CON(u0, ej +1, e). 
if v E Vnode  then there exist offset vertices vo  for which v was a node vertex. 
for each such offset vertex vo: 

if yi(v.) = u0 and y2(vo) = v. 
then y2(vo) 

for each edge ei replaced above, for which END(u0, v0, ei) is 
defined: 

END(u0, v., e0i) F  END(u0, vo, ei), 
START(vo, ui, e0i) 4- START(vo, v, 

for each edge ej+1 replaced above, for which END(v, v., ej+i) is 
defined: 

END(ui, v., ei0) END(v, vo, ej+i), 
START(vo, u0, eio) F  START(vo, u0, 

else y2(vo) u0, 
for each edge ej replaced above, for which END(ui, v0, ei) is 
defined: 

END(ui, v., ei0) F  END(ui, v0, ei), 
START(vo, u0, ei0) F  START(vo, v, ei). 

for each edge ei+1 replaced above, for which END(v, v., ei+i) is 
defined: 

END(u0, v., e0i) F  END(v, v., ei+r), 
START(vo, u1, e0i) 4- START(vo, ui, ei-I-1). 

Vnode F  Vnode 	v }. 
else Vnode <- V.& + { V }. 

10.4.3. Searching a discrete dynamic network with offset vertices 

We now adapt the DYNET algorithm for searching a discrete dynamic network 
from chapter 6 to allow an offset vertex as starting vertex or terminating vertex. As 
we saw earlier, we only need to consider offset vertices during search if the starting 
vertex or terminating vertex is an offset vertex. We shall look at each case in turn, for 
the forward pass and for the backward pass. 
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10.4.3.1. An offset vertex as the starting vertex; the forward pass 

In the forward pass of the definition of the DYNET algorithm (see section 6.6.), 
the starting vertex is handled in step (1): a partial path is created, consisting of the 
starting vertex only. The end value of the path is made the start value Tstart. Since this 
path is the only path that is put in the frontier, at step (5) new (partial) paths to all 
neighbours of the starting vertex are created. If the starting vertex is an offset vertex, 
we create paths from the offset vertex to the two node vertices adjacent to the offset 
vertex. The end values of the paths are the end values of the edges from the offset 
vertex to the node vertices which are connected to it. The offset vertex is temporarily 
treated as a node vertex by creating paths to its adjacent node vertices. The 
information of the edges from the offset vertex to the node vertex can be recovered 
by using the START and END functions to determine the start and end values of the 
connecting edges. Of course we have to make sure that we include all relevant edges: 
all edges which arrive within the maxiCON interval at the node vertex. Precisely: 

For each edge e for which the following two ordered conditions hold: 
(1) START(s, yi(s), e) Tstart, 

(2) end(e) < end(enun) + maxiCON(yi(s)), 
where end(emin) is the minimum end value of any edge satisfying (1). 

create a partial path P = s, e, yi(s) . 

The same must also be repeated for the second node vertex to which the starting 
vertex is connected, y2(s): 

For each edge e for which the following two ordered conditions hold: 
(1) START(s, y2(s), e) Tstart, 

(2) end(e) < end(emin) + maxiCON(y2(s)), 
where end(emin) is the minimum end value of any edge satisfying (1). 

create a partial path P = s, e, y2(s) . 

10.4.3.2. An offset vertex as the terminating vertex; the forward pass 

In the forward pass, when the terminating vertex is an offset vertex, we create 
partial paths to the offset vertex when a partial path to one of its adjacent node 
vertices has become the branching path (step (3) of the algorithm of section 6.6). We 
can recognize a node vertex adjacent to the offset vertex by comparing it to the y 
values of the offset vertex. We can recover the information about the edges 
connecting the node vertex and the offset vertex by using the START and END 
functions to determine the start and end values of the connecting edges. We only 

need the edge which arrives at the offset vertex with the smallest end value. Since, 
from the offset vertex, we shall not construct further paths, we do not need to include 
other relevant edges (edges which arrive within the maxiCON interval at the offset 
vertex). Precisely: 

if ui = yi(t) or if ui = y2(t), 
then find the edge 	ui y2(t) or ui yi(t) respectively, for which the 
following three ordered conditions hold: 

(1) END(uj, t, ej) is defined, 
(2) start(ei) end(ei-i) + CON(ui, 	, 

(3) END(ui, t, ei) is minimum 

10.4.3.3. Offset vertices as starting and terminating vertex; the forward pass 

When both the starting vertex and the terminating vertex are an offset vertex, a 
special case arises when they are both adjacent to the same pair of node vertices. We 
must (also) create a partial path from one offset vertex to the other directly, without 
going to a node vertex first. We must find an edge which has a start value at the 
(offset) starting vertex of at least Tstart, and which has a minimum end value at the 
(offset) terminating vertex. These values of the edge at the offset vertices can be 
recovered by using the START and END functions. In order to determine in which 
direction we must go from one node vertex to the other node vertex, we can also use 
the START and END values. We shall look at each possible case (see also fig. 10.8). 

(1) if yi(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that 
START(s, y2(s), e) < END(yi(t), t, e), 

then we must find the edge e from yi(s) to y2(t) for which the following two 
ordered conditions hold: 

(1) START(s, y2(s), e) Tstart 

(2) END(yi(t), t, e) is minimum. 

(2) if yi(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that 
START(s, y2(5), e) END(yi(t), t, e), 

then we must find the edge e from y2(s) to yi(t) for which the following two 
ordered conditions hold: 

(1) START(s, yi(s), e) Tstart 

(2) END(y2(t), t, e) is minimum. 

(3) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that 
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START(s, y2(s), e) < END(y2(t), t, e), 
then we must find the edge e from yi(s) to WO for which the following two 
ordered conditions hold: 

(1) START(s, y2(s), e) Tstart 

(2) END(y2(t), t, e) is minimum 

(4) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that 

START(s, y2(s), 	END(y2(t), t, e), 
then we must find the edge e from y2(s) to y2(t) for which the following two 
ordered conditions hold: 

(1) START(s, yi(s), e) Tstart 

(2) END(yi(t), t, e) is minimum 

10.4.3.4. An offset vertex as the starting vertex; the backward pass 

In the backward pass, when the starting vertex is an offset vertex, we create 
partial paths from the offset vertex when a partial path to one of its adjacent node 
vertices has become the branching path (step (3) of the algorithm of section 6.6). We 
only need the edge which arrives at the offset vertex with the greatest start value. 
Since we shall not construct further paths to the offset vertex, we do not need to 

include other relevant edges (edges which depart within the maxiCON interval at the 

offset vertex). Precisely: 

if ui = yi(s) (or respectively if u = y2(s)): 

then find the edges ei-1: y2(s) ui (respectively yi(s) ui), for which the 

following three ordered conditions hold: 
(1) START(s , ei-1) is defined, 

(2) end(ei-1) 5 start(ei) — CON(ui, 	, 
(3) START(s, ei-1) is maximum. 

10.4.3.5. An offset vertex as the terminating vertex; the backward pass 

In the backward pass of the definition of the DYNET algorithm, the terminating 
vertex is handled in step (1): a partial path is created, consisting of the starting vertex 
only. The start value of the path is made the label of the terminating vertex from the 

forward pass A(t). Since this path is the only path that is put in the frontier, at step (5) 
new (partial) paths from all neighbours of the terminating vertex are created. If the 
terminating vertex is an offset vertex, we create paths to the offset vertex from the 
node vertices adjacent to the offset vertex. The start values of the paths are the start 
values of the edges from the adjacent node vertices to the offset vertex. The offset  

vertex is temporarily treated as a node vertex by creating paths from its adjacent 
node vertices. The information of the edges from the node vertex to the offset vertex 
can be recovered by using the START and END functions to determine the start and 

end values of the connecting edges. Of course we have to make sure that we include 
all relevant edges: all edges which depart within the maxiCON interval at the node 
vertex. Precisely: 

For each edge e for which the following two ordered conditions hold: 
(1) END(yi(t), t, e) A(t), 
(2) start(e) < start(e.) — maxiCON(yi(t)), 

where end(emax) is the maximum start value of any edge satisfying (1), 
create a partial path P = yi(t), e, t . 

10.4.3.6. Offset vertices as starting and terminating vertex; the backward pass 

In the backward pass, when both the starting vertex and the terminating vertex 
are offset vertices, and both adjacent to the same pair of node vertices, again we must 
(also) create a partial path from one offset vertex to the other directly, without going 
to a node vertex first. We must find an edge which has an end value at the (offset) 
terminating vertex of at most A(t), and which has a maximum start value at the 
(offset) starting vertex. These values of the edge at the offset vertices can be 
recovered by using the START and END functions. In order to determine in which 
direction we must go from one node vertex to the other node vertex, we can also use 
the START and END values. We shall look at each possible case (see also fig. 10.8). 

(1) if yt(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that 

START(s, y2(s), e) < END(yi(t), t, e), 
then we must find the edge e from yi(s) to y2(t) for which the following two 
ordered conditions hold: 

(1) END(yi(t), t, e) A(t) 
(2) START(s, y2(s), e) is maximum. 

(2) if yi(s) = yi(t) and y2(s) = y2(t), and if there exists an edge e such that 
START(s, Y2(5), e) END(yi(t), t, e), 

then we must find the edge e from y2(s) to yi(t) for which the following two 
ordered conditions hold: 

(1) END(y2(t), t, e) 5. A.(t) 
(2) START(s, yi(s), e) is maximum. 

(3) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that 
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then A(s) 4- Tstart and create a partial path P0 consisting of s only, 
end(P0) Tstart. F F { P0 } . 

else 
F 4- 0 . 
for each edge e for which the following two ordered conditions hold: 
(1) START(s, yi(s), e) Tstart, 

(2) end(e) < end(emin) + maxiCON(yi(s)), 
where end(emin) is the minimum end value of any edge satisfying (1). 

create a partial path P = s, e, yi(s) , F-F + {P} , 
if A(yi(s)) > end(e) then A(yi(s)) <-• end(e). 

for each edge e for which the following two ordered conditions hold: 
(1) START(s, yz(s), e) Tstart, 

(2) end(e) < end(emin) + maxiCON(y2(s)), 
where end(emin) is the minimum end value of any edge satisfying (1). 

create a partial path P = s, e, Y2(s) , F <- F + {P } , 

if A.(y2(s)) > end(e) then A.(y2(s)) F  end(e). 
(2) if s E Voff and t E Voff: 

if yi(s) = yi(t) and yz(s) = y2(t), then 
if there exists an edge e such that START(s, y2(s), e) < END(yi(t), t, e), 
then find the edge for which the following two ordered conditions hold: 

(1) START(s, y2(5), e) Tstart 

(2) END(yi(t), t, e) is minimum 
and create a partial path P = s, e, t , end(P) <- END(yi(t), t, e). 

else find the edge for which the following two ordered conditions hold: 

(1) START(s, yi(s), e) Tstart 

(2) END(y2(t), t, e) is minimum, 
and create a partial path P = s, e, t , end(P) 4-  END(y2(t), t, e). 

else 
if there exists an edge e such that START(s, y2(s), e) < END(y2(t), t, e), 
then find the edge for which the following two ordered conditions hold: 

(1) START(s , Y2(5), e) Tstart 

(2) END(y2(t), t, e) is minimum, 
and create a partial path P = s, e, t , end(P) <- END(y2(t), t, e). 

else find the edge for which the following two ordered conditions hold: 
(1) START(s, yi(s), e) Tstart 

(2) END(y 1(0, t, e) is minimum, 

and create a partial path P = s, e, t , end(P) END(yi(t), t, e). 
F - F + P } . If A(t) > end(P) then 40 4- end(P). 

START(s, y2(s), e) < END(y2(t), t, e), 
then we must find the edge e from yi(s) to y1(t) for which the following two 
ordered conditions hold: 

(1) END(y2(t), t, e) A(t) 
(2) START(s, y2(s), e) is maximum. 

(4) if yi(s) = y2(t) and y2(s) = yi(t), and if there exists an edge e such that 
START(s, y2(s), e) END(y2(t), t, e), 

then we must find the edge e from y2(s) to y2(t) for which the following two 
ordered conditions hold: 

(1) END(yi(t), t, e) A.(t) 
(2) START(s , yi(s), e) is maximum. 

10.4.4. DYNET for searching a discrete dynamic network with offset vertices 

We now give a formal definition of the DYNET algorithm, adapted to handle an 
offset vertex as starting vertex or terminating vertex. An offset vertex as starting 
vertex is handled in step (1) of the forward pass and step (5) of the backward pass. 
An offset vertex as terminating vertex is handled in step (5) of the forward pass and 
in step (1) of the backward pass. The special case of both the starting vertex and the 
terminating vertex as an offset vertex between the same pair of node vertices is 
handled in step (2) of both passes. The other steps are similar to the original 
definition of the algorithm for searching a discrete dynamic network (for an 
explanation of the different steps see chapter 6). 

Consider a discrete dynamic network containing offset vertices, consisting of 

Vnode, Voff, E, CON, START, END. Kok is the collection of node vertices, Voff the 
collection of offset vertices, E the collection of directed edges joining two vertices 
from Vnode,  CON the connection function. The two special vertices s and t of the 
network are the starting and terminating vertices (both either node or offset vertices). 
We want to find a legal path from s to t in our discrete dynamic network, where the 
end value of the path is minimum and given this end value, the start value of the path 
is maximum and at least Tstart. The maximum value of CON at a vertex u is 
maxiCON(u), which is non-zero. The START and END functions give the start and 
end values of the edges connected to offset vertices. 

Pass 1: 

(1) for all v E Kock , A(v) 4- oo  , and co(v, u) = oo for each neighbour u of v. 
if t E Voff then A.(t) 	°C)  . 

if S E Vnode 
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(3) let Pm  be a partial path s, e0, 	ej-i, uj in F for which end(Pm) is 

minimum; if F is empty then stop, no complete path could be found. 
(4) if uj = t, stop, Pm  is a complete path with an optimal end value. 

(5) if t E Kff, then 
if uj = y1(t) or if u = y2(t): 
then find the edge ej: uj y2(t) or uj y1(t) respectively, for which the 

following three ordered conditions hold: 
(1) END(uj, t, e j) is defined, 

(2) start(ej) end(ej-1) + CON(uj, ej_i,ej) , 

(3) END(uj, t, ej) is minimum. 

create a partial path Pn  = s, e0, 	uj-1, 	uj, ej, t , 

end(Pn) F  END(uj, t, e'), and F F + { Pn  } . 

if )1(t) > END(uj, t, ej) then A(t) END(uj, t, ej). 

(6) if end(Pm) < A(uj) + maxiCON(uj). 
then for each relevant edge ej  : uj 

if A(uj+i) > end(ej) 
then A(uj+i) 4- end(ej) 
if end(ej) < A(uj+i) + maxiCON(uj+i) 
then create a partial path Pn  = s, e0, 	uj-1, ej-1, uj, ej, uj+1 , and 

F F + { Pn  } . 
if end(ej) < w(uj+i, 
then co(u j+i, uj) 4-- end(ej). 

(7) F 4- F — Pm  } and go to step (3). 

A relevant edge is defined as follows: given a partial path u0,..., uj-1, 	uj and a 

vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: uj uj+1 for 

which the following two ordered conditions hold: 
(1) start(ej) end(ej-1) + CON(u3, 	ej), 
(2) end(ej) < end(emm) + maxiCON(uj+i), 

where end(emm) is the minimum end value of any edge satisfying (1). 

Pass 2: 

(1) for all v E Vnode K(V) 	: 

if s E Voff  then K(s) — . 
if t E Vnode 

then K(t) A(t) and create a partial path P0 consisting of t only, 
start(P0) A(t). F { P0 : 

else 
F 	,  

for each edge e for which the following two ordered conditions hold: 
(1) END(yi(t), t, e) 5 A(t), 
(2) start(e) < start(emax) — maxiCON(yi(0), 

where end(emax) is the maximum start value of any edge satisfying (1). 
create a partial path P = WO, e, t , F4-F+ {P}, 
if K(yi(t)) < start(e) then ic(y1(t)) F  start(e). 

for each edge e for which the following two ordered conditions hold: 
(1) END(y2(t), t, e) A(t), 
(2) start(e) < start(e max) — maxiCON(y2(t)), 

where end(emax) is the maximum start value of any edge satisfying (1). 
create a partial path P = y2(t), e, t , F4-F+ {P}, 
if K(y2(t)) < start(e) then ic(y2(t)) F start(e). 

(2) if s E Voff  and t E Voff: 

if yi(s) = y1(t) and y2(s) = y2(t), then 
if there exists an edge e such that START(s, y2(s), e) < END(yi(t), t, e), 
then find the edge for which the following two ordered conditions hold: 

(1) END(yi(t), t, e) s A(t) 
(2) START(s, y2(5), e) is maximum, 
and create a partial path P = s, e, t , start(P) START(s, y2(s), e). 

else find the edge for which the following two ordered conditions hold: 
(1) END(y2(t), t, e) A(t) 
(2) START(s, yi(s), e) is maximum, 
and create a partial path P = s, e, t , start(P) F  START(s, yi(s), e). 

else 
if there exists an edge e such that START(s, y2(s), e) < END(y2(t), t, e), 
then find the edge for which the following two ordered conditions hold: 

(1) END(y2(t), t, e) A(t) 

(2) START(s, y2(5), e) is maximum, 
and create a partial path P = s, e, t , start(P) F  START(s, y2(s), e). 

else find the edge for which the following two ordered conditions hold: 
(1) END(yi(t), t, e) A(t) 
(2) START(s, yi(s), e) is maximum, 
and create a partial path P = s, e, t , start(P) F  START(s, yi(s), e). 

F F + { P } . If A.(t) > end(P) then (t) end(P). 
(3) let Pm  be a partial path uj,—, 	t in F for which start(Pm) is maximum. 
(4) if uj = s, stop, Pm  is an optimal complete path. 
(5) if s E Von., then 

if uj = yi(s) or if u = y2(s): 
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then find the edge ej-1: y2(s) uj  or yi(s) --0 uj respectively, for which the 

following three ordered conditions hold: 

(1) START(s, uj, ej-1) is defined, 

(2) end(ej-1) < start(e j) - CON(uj, ej-A) 

(3) START(s, uj, ej-1) is maximum. 

create a partial path 	= s, ej-1, 	uk-1, ek-1, t , 

start(Pn) START(s, u j, ej_i), and F 4- F { 	} 

if K(t) < START(s , u j, ej-l) then K(t) 4- START(s, uj, ej-1). 

(6) if start(Pm) > K(uj) - mctxiCON(uj) 
then for each relevant edge ej-1 : uj-1 uj, with to(uj, uj-1) < start(Pm), 

if K(uj-1) < start(ej-1) 
then K(uj-i) F  start(ej-0 

if start(e j-1) > K(uj-1) - maxiCON(uj-1) 

then create a partial path Pn = 	ej-1, uj,..., uk-1, ek-1, t , and 

F F + {P„ } . 

(7) F F - { Pm  } and go to step (3). 

A relevant edge is defined as follows: given a partial path uj, ej, 	uk and a 

vertex uj-1, then the relevant edges from uj-1 to uj are the edges ej-1: uj-1 uj for 

which the following two ordered conditions hold: 

(1) end(ej-1) < start(ej) - CON(uj, ej-1, 

(2) start(ej-1) > start(emax) - maxiCON(ui-1), 

where start(emax) is the maximum start value of any edge satisfying (1). 
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11. Train Changes 

Until now we have not taken into account one particular property of travelling 
by train: (explicit) train changes. We have been interested in optimal solutions in 
terms of travel time only. In a practical application, however, people are also 
interested in the number of train changes. An optimal solution in terms of travel 
time should also have the least number of train changes possible, given the optimal 
travel time. Furthermore, people are usually also interested in solutions which may 
take more travel time, but which have fewer train changes. In this chapter, we shall 
first look at how we can minimize the number of train changes in an optimal 
solution. Then we shall look at how we can find some suboptimal solutions with 
fewer train changes. 

11.1. A train in a discrete dynamic network 

In the previous chapters, conceptually we changed train at each station; every 
time we used an edge it was regarded as a next train. When no train change was 
actually required this was implicitly represented by the connection function: if ei and 
ei+1 represent the same ongoing train at the station represented by the vertex vi+i, 
then CON(vi+1, ei+i) = 0. 

Note that even though we may need no time between arrival and departure in 
order to continue on the same train, the train may be standing at the station for some 
time. Precisely, even though 

CON(vi+t, ei+t) = 0 
it may be so that start(ei+i) - end(ei) > 0. 
It might even be so that start(ei+i) - end(ei) > maxiCON(vi+i). 

In order to model a train change more accurately, we first have to introduce the 
concept of a train to discrete dynamic networks. 

In order to represent a train in a discrete dynamic network we give each edge e 
an extra attribute, the identifier id(e). A train is a sequence of edges e0, el,..., ek such 
that: 
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train 105 and from Ass to Asd by train 115. The backward pass of the algorithm, 
which determines the matching latest possible departure, gives as solution to travel 
from Utg to Zd by train 105, from Zd to Ass by train 110 and from Ass to Asd by train 
115. This (final) solution has two train changes, whereas we could travel equally 
optimally from Utg to Ass by train 105 and from Ass to Asd by train 115 with only 
one train change at Ass. Such an unnecessary train change is caused by the 
"greediness" of the algorithm. When we arrive at a station, we take the very first 
opportunity to travel onwards (the relevant edges). We cannot tell beforehand which 
non-relevant later edges (trains) might give an equally optimal solution with fewer 
train changes. Trying all later non-relevant edges during the search process could 
result in a combinatorial explosion. Therefore, in order to eliminate unnecessary 
train changes, we shall postprocess a solution. 

11.4. Eliminating unnecessary train changes 

Suppose that, using the algorithm for searching a discrete dynamic network, we 
have found the following (legal) path P as solution: 

S = v0, e0, 	Vj, ej, vi+1,:::, ek-1, Vk = t 

We must process this path P in such a way that: 

(1) there is a minimum number of train changes, 
(2) the path P remains optimal, 
(3) the path P remains legal. 

We shall first look at each of these aspects separately, and then combine them 
into one algorithm. 

11.4.1. Eliminating a train change 

In order to eliminate unnecessary train changes we traverse the path P in a 
forward fashion (since the final solution was found by a backward search process). At 
each vertex vi+i, 0 i < k-1, we do the following check: 

if id(ei+i) # id(ei) 
then 

if there exists an edge eq: vi+1 vi+2 such that id(eq) = id(ei), 
then replace e;+1 by eq. 

(1) the start vertex of ei-f-i is the end vertex of ei , 0 i < k, 

(2) start(ei+i) end(ei) , 0 i < k, 

(3) CON(vi+i, ei+i) = 0 where vi+1 is the end vertex of ei and the start vertex of 

ei+1 , 0 	i < k, 

Each edge ei in the sequence, 0 5 i k, is given the same identifier id(ei). 

A train is a sequence of connecting edges which require no connection time. 
The edges which compose the train have the same identifier. This way, a train can be 
viewed as a macro operator: one super edge consisting of multiple connecting edges 
(for a discussion of macro operators see [Da, 1977]). 

11.2. A train change in a discrete dynamic network 

Suppose we have the following (legal) path P in a discrete dynamic network: 

v0, e0, 	vj, ej, 	ek-1, Vk 

A connection vi+i, ei, ei+1 0 i < k, is a train change if 

id(ei+i) # id(ei) 

or equivalently, 

CON(vi+i, ei+i) > 0. 

11.3. Solutions with unnecessary train changes 

Sometimes, unnecessary train changes occur in a solution found by using the 
DYNET algorithm for searching discrete dynamic network (presented in chapter 6). 
For instance, consider the following example, in which we want to travel from Utg to 
Asd, departing at 7:00. The changing time at Zd and Ass is 5 minutes. 

100 105 110 115 Station 
Utg 7:00 7:10 Uitgeest 
Zd 7:15 7:25 7:30 Zaandam 
Ass 7:35 7:40 7:45 Amsterdam Sloterdijk 
Asd 7:50 Amsterdam Central Station 

The forward pass of the algorithm, which determines the earliest possible 
arrival, gives as solution to travel from Utg to Zd by train 100, from Zd to Ass by 
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At each vertex we check whether there is a train change. If there is, then we check 
whether the previous train continues to the same station as the next train, in which 
case the journey can actually be continued on the previous train. 

11.4.2. Preserving optimality of solution 

In the process we must, however, take care to preserve optimality of solution. 
For instance, consider the following example, in which we want to travel from Hk to 
Asd. The changing time at Hlm is 4 minutes. 

105 200 Station 
Hk 8:00 Heemskerk 

Hlm 8:16 Haarlem (arrival) 
Hlm 8:20 8:23 Haarlem (departure) 
Asd 8:35 8:38 Amsterdam Central Station 

In this example, the search algorithm would give as solution to travel from Hk 
to Hlm by train 200, and from Hlm to Asd by train 105 (arriving at 8:35). If we would 
traverse this solution as described in the previous section, we would replace train 105 
from Hlm to Asd by train 200 (resulting in an arrival at 8:38). Although this is a 
solution with one fewer train change, it has become suboptimal. So, when the edge 

we try to replace by eq  arrives at the terminating vertex vk, we must also test whether 

end(eq) s end(ek-1). In a case like this, when a train stands at a station longer than 
the time required to change to another train (possibly also going to our destination), 
the solution may become suboptimal. Another case in which this might occur is when 
the ongoing train to our destination is slower than the train we changed to. 

11.4.3. Preserving legality of solution 

We should also take care to preserve legality. For instance, consider the 
following example, in which we want to travel from Hk to Ut. The changing time at 
Hlm is 4 minutes and at Asd 5 minutes. 

400 500 Station 
Hk 9:00 Heemskerk 

Hlm 9:20 9:25 Haarlem 
Asd 9:45 9:47 Amsterdam Central Station 
Ut 10:12 Utrecht Central Station 

In this example, the search algorithm would give as solution to travel from Hk 
to Hlm by train 400, and from Hlm to Ut by train 500. If we would traverse this 
solution as described above, we would replace train 500 from Hlm to Asd by train  

400. However, that would yield an illegal path, since the margin at Asd is only 2 
minutes whereas the changing time is 5 minutes. We cannot simply test whether the 
next change would have a sufficient margin (test whether start(ei+2) — end(eq) 
CON(v,+2, eq, ei+2)), because it may be possible to also replace the next train ei+2, in 
which case we would not have to change trains at all. Instead, we must keep track of 
which illegal changes may occur, and backtrack when we cannot replace a next train 
resulting in the illegal change. We can describe a backtracking process by using a 
recursive definition. 

11.4.4. The algorithm to eliminate unnecessary train changes 

We now combine the techniques discussed in the previous sections into one 
recursively defined process TRAVERSE(P, i): 

Suppose P = v0, e0, 	vj, 	ek-1, vk: 

iefl else e= 
k — 1 then TRAVERSE (P, i) TRUE. 

if id(e,+i) # id(e,) 
then 

if there exists an edge eq: vi+1 --> vi+2 such that 
(1) id(eq) = id(e,) and 
(2) end(eq) end(ei+i) if i+2 = k. 

then 

replace ei+1 by eq, 
if TRAVERSE(P, i+1) = FALSE 

if start(ei+2) — end(eq) < CON(vi+2, eq, ei+2) 
then 

replace back eq  by ei+i, 
TRAVERSE(P, i+1), 
TRAVERSE(P, i) 4- FALSE. 

else TRAVERSE (P, i) TRUE. 
else TRAVERSE(P, i) <- TRUE. 

else TRAVERSE(P, i+ 1), 
TRAVERSE(P, i) <- FALSE. 

else TRAVERSE(P, i+ 1), 
TRAVERSE(P, i) TRUE. 

After the search algorithm for searching discrete dynamic networks has given a 
(legal and optimal) solution path P, unnecessary train changes can be eliminated by 
calling TRAVERSE (P, 0). 
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11.5. Suboptimal solutions with fewer train changes 

Until now we have been solely interested in optimal solutions, i.e. solutions with 
the least travel time regardless of the number of train changes. In a practical 
situation however, people often want to know not only the quickest solution, but also 
solutions which may take more time but have fewer train changes. In the following 
sections we shall look at different, increasingly complex cases of suboptimal 
solutions with fewer train changes. We shall show how the DYNET algorithm for 
searching discrete dynamic networks can be adapted to find some of these cases. 

11.5.1. Competing solutions 

A simple case of suboptimal solutions with fewer train changes is the case in 
which two solutions with different characteristics (in terms of travel time and train 
changes) compete at a vertex. For instance, consider the following example, in which 
we want to travel from Hk to Asd (see fig. 11.1). The changing time at Utg is 3 

minutes. 

100 200 300 Station 
Hk 8:00 8:00 Heemskerk 
Utg 8:05 8:08 1 Uitgeest 
Hlm i 8:25 Haarlem 
Zd 8:25 i Zaandam 
Ass 8:35 8:40 Amsterdam Sloterdijk 
Asd 8:40 8:45 Amsterdam Central Station 

The optimal solution, with one train change, is to travel from Hk to Utg by train 
100, and from Utg to Asd by train 200. However, we could also travel from Hk to Asd 
directly by train 300, with only 5 minutes more travel time. 

Utg 
100 
Hk 

11.5.2. Using a change value 

When we are using the DYNET algorithm in the example of fig. 11.1, from Hk 
Utg gets labeled 8:05 and Him gets labeled 8:25. Then Utg becomes the branching 
vertex and Zd gets labeled 8:25. Hlm becomes the branching vertex next and Ass 
gets labeled 8:40. Then Zd becomes the branching vertex and Ass gets relabeled 
8:35. Ass becomes the branching vertex (by the partial path via Zd) and Asd gets 
labeled 8:40. When Ass becomes the branching vertex for the second time (by the 
path via Hlm) it is rejected because it arrives outside the maxiCON interval. So, the 
direct path is developed until Ass, and is then rejected, favouring the faster path. 

We can find such suboptimal solutions with fewer train changes, which compete 
with optimal solutions with more train changes, by introducing a change value. The 
change value is the extra time we are prepared to travel to avoid one train change. It 
is the time a train change is "worth". In the algorithm for searching discrete dynamic 
networks, the end value of a path is used to evaluate a path in the forward pass, and 
the start value of a path is used in the backward pass. With the change value, we can 
give each path a corrected end value in the forward pass, and a corrected start value in 
the backward pass. The corrected end value of a path P, cend(P), is defined as: 

Cend(P) = end(P) + CHANGES(P) * change_value 

where CHANGES (P) is the number of train changes occurring in P. 

Similarly, for the backward pass of the algorithm, the corrected start value is defined 
as: 

cstart(P) = start(P) — CHANGES(P) * change_value. 

By having the algorithm search for paths with optimal corrected start and end values, 
whenever there is a choice, a suboptimal solution with fewer train changes is 
preferred. 

We now give a formal definition of the DYNET algorithm, using corrected start 
and end values (for a detailed discussion of the different steps of the algorithm, 
please refer to chapter 6). 

Consider a discrete dynamic network consisting of the graph G = (KE) and the 
connection cost function CON. The maximum value of CON at a vertex u is 
maxiCON(u), which is non-zero. The number of train changes in a path P is denoted 
by CHANGES(P). The change_value is the time that we are prepared to travel to 
avoid one train change. The corrected end value of a path P, cend(P), and the 
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corrected start value of a path P, cstart(P), are defined as above. The two special 

vertices s and t of the network are the starting and terminating vertices. We want to 

find a legal path from s to t in our discrete dynamic network, where the corrected end 

value of the path is minimum and given this corrected end value, the corrected start 

value of the path is maximum and its start value at least Tstart. 

Pass 1: 

(1) yl(s) F Tstart and for all y E V, y # s, 	4-  00 

Create a partial path P0 consisting of s only, cence0) Tstart: 

For all y E V, w(v, u) = 00 for each neighbour u of v. 
(2) F •*- { P0 } . 
(3) Let Pm  be a partial path s, e0, 	uj-j, 	uj in F for which Cend(Pm) is 

minimum; if F is empty then stop, no complete path could be found. 

(4) if uj  = t, stop, Pm  is a complete path with an optimal corrected end value. 

(5) if cemem) < A.(uj) + maxiCON(ui). 

then for every relevant edge ej : uj -› uj +1: 
create a partial path Pn  = s, e0, 	u j 	uj, ej, u +1 

Cend(Pn) end(Pn) + CHANGES(Pn) * change value 
if A(uj+i) > Cend(Pn) 
then A(uj +1) F Cend(Pn) 

if Cend(Pn) < A(uji-i) + maxiCON(uj+i) 
then F F + { Pn } . 
if end(ej) < w(ui+1, 11i) 
then to(uj+i, uj) F  end(ei). 

(6)F4-F— {Pm } and go to step (3). 

A relevant edge is defined as follows: given a partial path u0,..., uj-1, 	uj and a 

vertex uj+i, then the relevant edges from uj to uji-i are the edges ej: uj uj+1 for 

which the following two ordered conditions hold: 

(1) start(ej) end(ei-1) + CON(ui, 	ej), and 

(2) end(ej) < end(emm) + maxiCON(ui+i), 
where end(emin) is the minimum end value of any edge satisfying (1). 

Pass 2: 

(1) K (t) F  A(t) and for all y E V, y # t, K (v) 4- — 00 . 
Create a partial path P0 consisting of t only, cstart(P0) E A(t). 

(2) F { P0} . 
(3) Let Pm  be a partial path uj,..., 	ek-1, t in F for which cstart(Pm) is maximum. 
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(4) if uj = s, stop, Pm  is an optimal complete path. 
(5) if Cstart(Pm)  > K(uj) — maxiCON(u) 

then for every relevant edge ej-1 : uj-1 uj, with (qui, uj-1) 5 start(Pm), 
create a partial path Pn = uj-1, ej-1, 	uk-1, 	t 
Cstart(Pn) F start(Pn) — CHANGES(Pn) * change _value. 
if K(uj-1) < Cstart(Pn) 

then tc(uj-1) F  Cstart(Pn) tart,  

if cstart(Pn) > K(uj-i) — maxiCON(ui-1) 
then F F +{Pn } . 

(6) F 4- F — { Pm } and go to step (3). 

A relevant edge is defined as follows: given a partial path uj, ej, uj+1,..., uk and a 
vertex uj-i, then the relevant edges from uj-1 to uj  are the edges ej-1: uri -* uj for 
which the following two ordered conditions hold: 

(1) end(ei-1) s start(ej) — CON(ui, 	es), and 
(2) start(ei-1) > start(emm,) — maxiCON(uri), 

where start(e max) is the maximum start value of any edge satisfying (1). 

Suppose that in the example of fig 11.1, the change value is 15. Then, in the 
forward pass, the corrected end value of the partial path Hk—*Utg-Ass (with one 
train change) would be 8:35 + 1 * 15 = 8:50, and the corrected end value of the 
(direct) partial path Hk.-411m-Ass would be 8:40 + 0 * 15 = 8:40. So, the direct 
path would be favoured. 

11.5.3. Using macro operators 

There are situations however, when the above approach will fail to find 
suboptimal solutions with fewer train changes. For example consider the following 
example in which we want to travel from Utg to Asd (see fig. 11.2). The changing 
time at Ass is 5 minutes. 

400 410 500 Station 
Utg 8:00 8:00 Uitgeest 
Him 8:25 Haarlem 
Ass 8:30 8:35 8:40 Amsterdam Sloterdijk 
Asd 8:40 8:45 Amsterdam Central Station 

The optimal solution, with one train change, is to travel from Utg to Ass by train 
400, and from Ass to Asd by train 410. However, we could also travel from Utg to 
Asd directly by train 500, with only 5 minutes more travel time. The algorithm 
described above will fail to find this solution. From Utg, Hlm is labeled 8:25 and Ass 
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500 

Hlm 
500 
	

Ass 500 

Fig. 11.2. 

is labeled 8:30. Hlm becomes the next branching vertex and from Hlm, Ass is not 
relabeled and the new path (which would eventually result in the direct path) is not 
put in the frontier because it arrives outside the (corrected) maxiCON interval: the 
corrected end value of the partial path Utg-*Ass is 8:30 + 0 * 15 = 8:30 (remember 
that the change_value is 15), while the corrected end value of the partial path 
Utg-.111m-)Ass is be 8:40 + 0 * 15 = 8:40. So, the path resulting in one train change 
is still preferred. 

The problem is that, as a result of the path so far (from Utg to Ass), a train 
change is induced later (from Ass to Asd). So, we are faced with the problem that in 
order to find paths which will eventually result in suboptimal paths with fewer train 
changes, we must remember and develop more paths than those which arrive within 
the maxiCON interval only. However if we do not insist on finding all suboptimal 
paths with fewer train changes, we do not need to remember all paths, and those 
which we do need to remember need not be developed further in all directions. 

11.5.3.1. Which paths to remember 

Suppose the path with the best corrected end value which arrives at a vertex v, 
path P, has an end value of t, has CHANGES(P) changes, and a corrected end value 
of cend(P). We need to remember all paths which arrive at v and have the same 
number of train changes. 

Paths with fewer train changes but a higher corrected end value have lost more 
time than we valued the decrease in train changes was worth, compared to P. 
Although it is not impossible that these paths "improve" later on (i.e. do become 
interesting because the number of train changes in the optimal solution has 
increased) and result in an interesting solution, we do not develop such paths 
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further. We have to make a trade-off between efficiency of search and the number of 
interesting solutions which we try to find. 

Similarly, for paths with more train changes and a higher corrected end value, 
the excess number of train changes is not worth the decrease in travel time, 
compared to P. Again, there is no guarantee that these paths do not improve later on 
and result in an interesting solution, but we do not develop those paths further. At 
the end of this chapter we shall look into the possibility of paths which are not 
interesting locally but improve later on. 

11.5.3.2. Which paths to develop 

First we make the observation that, since all paths we remember have the same 
number of train changes and since all those paths have greater corrected end value 
than P, it must be that for all paths PL, which we remember, we have end(P) 
end(PL). For the reasons describe in chapter 6, of these paths, those which arrive 
within the interval end(P) + maxiCON(v) need to be developed one step further in 
all directions (i.e. allowing new train changes to occur). The other paths are only 
interesting if they result in fewer train changes later on. Since any train which can be 
used to change to from these paths, can also be used from path P, changing trains 
from these paths will not give interesting solutions which cannot be constructed from 
P. Therefore, we only develop the paths arriving outside the maxiCON interval using 
the train represented by the last edge, i.e. along its macro operator. 

11.5.3.3. The DYNET algorithm, using macro operators 

We now give a formal definition of the DYNET algorithm for searching discrete 
dynamic networks adapted to use macro operators to favour solutions with fewer 
train changes. In the algorithm, the number of the train changes of the (corrected) 
best path arriving at a vertex v is denoted by co(v). 

Consider a discrete dynamic network consisting of the graph G = E) and the 
connection cost function CON. The maximum value of CON at a vertex u is 
maxiCON(u). The number of train changes in a path P is denoted by CHANGES(P). 
The change_value is the time that we are prepared to travel to avoid one train 
change. The corrected end value of a path P, cend(P), and the corrected start value of 
a path P, cstart(P), are defined as previously. The two special vertices s and t of the 
network are the starting and terminating vertices. We want to find a legal path from s 
to t in our discrete dynamic network, where the corrected end value of the path is 
minimum and given this corrected end value, the corrected start value of the path is 
maximum and its start value at least Tttart: 
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Pass 1: 

(1) A(s) 	Tstart and for all v E V, y s, A.(y) 4-  . 
Create a partial path P0 consisting of s only, cenre0) 4-  Tstart. 

For all v E V, w(v, u) = 00 for each neighbour u of v. 
(2) F 4-  { PO . 

(3) Let Pm  be a partial path s, e0, 	 uj in F for which cend(Pm) is 

minimum; if F is empty then stop, no complete path could be found. 

(4) if uj = t, stop, Pm  is a complete path with an optimal corrected end value. 

(5) if CHANGES(Pm) = co(u) and cend(Pm) < A(u j) + maxiCON(uj), 
then for every relevant edge ej : uj -> ui+i: 

create a partial path Pn = s, e0, 	 uj, e j, uj+1 . 
Cend(Pn) F end(Pn) + CHANGES(Pn) * change value 
if A.(uj+i) > Cend(Pn) 

then A.(tti +1) F Cend(Pn) and 99(uj+i) F  CHANGES(Pn). 
F F + { Pn} . 
if end(e) < w(uj+i, uj) 
then w(uj+i, uj) F  end(e). 

(6) if CHANGES(Pm) = co(uj) and A(u j) + maxiCON(uj) 5- cearem). 
then for the edge ej : uj -> uj+1 for which id(e j) = 

create a partial path Pn = s, e0, 	uj-1, 	uj, ej, uj+1 . 

Cend(Pn) F end(P,) + CHANGES(Pn) * change _value 
if il,(uj+i) > Cend(Pn) 

then A.(uj +1) F Cend(Pn) and so(uji-i) CHANGES(Pn). 
F F +{Pn} . 

(7) F 4-- F - { Pm } and go to step (3). 

A relevant edge is defined as follows: given a partial path u0,..., 	uj and a 

vertex uj+i, then the relevant edges from uj to uj+1 are the edges ej: uj -> uj+1 for 

which the following two ordered conditions hold: 

(1) start(e) end(ej_i) + CON(ui, ej-i, ej), and 

(2) end(ej) < end(emm) + maxiCON(uj+i), 
where end(emtn) is the minimum end value of any edge satisfying (1). 

Pass 2: 

(1) K(t) .E- A(t) and for ally E V, y # t, K(v) 4-- - 
Create a partial path P0 consisting of t only, Cstare0) F A(t). 

(2) F { P0} . 
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(3) Let Pm  be a partial path uj,..., uk-1, ek-i, t in F for which cstarem) is maximum. 
(4) if uj = s, stop, Pm  is an optimal complete path. 
(5) if yo(uj) = CHANGES(Pm) and cstart(Pm) > K(uj) - maxiCON(u), 

then for every relevant edge ej_i : uj-1 -> uj, with w(uj, uj-i) s start(Pm), 
create a partial path Pn  = uj-1, 	 ek-1, t , 
cstart(Pn) start(P,) - CHANGES(Pn) * change value. 
if K(uj-1) < Cstaren) 

then K(uj-i) 4- cstart,n 1 and co(uj-1) CHANGES(Pn). , 
F F +{Pn} . 

(6) if so(uj) = CHANGES(Pm) and K(u j) - maxiCON(uj) > cstarem) 
then for the edge ej-i : uj-i -' uj, with 	= id(e), 
and with w(uj, uj-1) < start(Pm), 

create a partial path Pn = 	uj,..., 	ek-1, t . 
cstart(Pn) F start(Pn) - CHANGES(Pn) * change _value. 
if K(uj-i) < Cstaren) 

then K(uj-1) cstart(Pn) and yo(uj_i) CHANGES(Pn). 
F F + { Pn} . 

(7) F +- F - { Pm } and go to step (3). 

A relevant edge is defined as follows: given a partial path uj, ej, uj+1,..., uk and a 
vertex uj-1, then the relevant edges from u j-i to uj are the edges ej-i: uj-i -› uj for 
which the following two ordered conditions hold: 

(1) end(ej-1) < start(ej) - CON(uj, 	ej), and 
(2) start(ej-1) > start(emax) - maxiCON(uj-1), 

where start(emax) is the maximum start value of any edge satisfying (1). 

11.5.3.4. Other cases 

As we already mentioned, there are still cases in which the algorithm described 
above fails to find an interesting suboptimal solution. For instance, consider the 
following case in which we want to travel from Uitgeest to Utrecht CS (see fig. 11.3). 
The changing time at Hlm is 4 minutes and at Ass and Asd 5 minutes. The 
change _value is 15. 

119 



Utg 	 Utg 

Hlm 	110 	Ass 115 Asd 	120 	Ut 	Hlm 	400 	420 Asd 

Fig. 11.3. 	 Fig. 11.4. 

105 110 115 120 200 250 Station 

Utg 8:00 8:05 Uitgeest 
Hlm 8:25 8:30 Haarlem 
Zd I 8:45 Zaandam 
Ass 8:45 8:50 9:05 9:10 Amsterdam Sloterdijk 

Asd 8:55 9:00 9:15 Amsterdam Central Station 

Ut 9:25 9:40 Utrecht Central Station 

The partial path Utg->Him--*Ass has an end value of 8:45, with one train change, 

giving a corrected end value of 9:00. The partial path Utg-'Zd—Ass has an end value 

of 9:05, with no train changes, so its corrected end value is 9:05. Since the extra 20 
minutes is not worth the fewer train change, the path is not developed further. So, we 
do not find the path to Ut with an end value of 9:40, and a corrected end value of 9:55. 

The path we do find, arrives at Ut at 9:25 with three train changes, giving a corrected 
end value of 10:10. In order to find such a path, which has fewer train changes but 
have lost too much time locally and "improve" later on, we must develop paths with 
fewer train changes allowing new train changes to occur (i.e. not only develop it 
along its macro operator). 

A similar situation can occur with solutions which have a better end value but 

which have locally too many train changes, and improve later on, compared to the 
optimal solution. For example consider the following case, in which we want to travel 
from Uitgeest to Amsterdam CS (see fig. 11.4). The changing time at Zd and Ass is 

5 minutes. The change value is 15. 

300 305 310 400 410 Station 
Utg 8:00 8:00 Uitgeest 
Him I 1 8:25 Haarlem 
Zd 8:15 8:20 Zaandam 
Ass 8:30 8:35 8:40 8:55 Amsterdam Sloterdijk 
Asd 8:40 9:00 Amsterdam Central Station 

The partial path Utg-Hlm—Ass has an end value of 8:40, with no train change, 
so its corrected end value is 8:40. The partial path Utg-Zd--a.Ass has an end value of 
8:30, with one train change, giving a corrected end value of 8:45. Since the extra train 
change is not worth the 10 minutes decrease in travel time, it is not developed 
further. So, we do not find the path to Asd with an end value of 8:40, and a corrected 
end value of 9:10. The path we do find, arrives at Ut at 9:00, giving a corrected end 
value of 9:15. In order to find these paths, we need to develop paths which have more 
train changes further, allowing new train changes to occur. 

A final example is a situation in which a later non-relevant edge (train) results 
in a better path. Suppose we want to travel from Utg to Asd. The changing time at 
Hlm is 4 minutes, the changing time at Ass is 5 minutes. The change _value is 15. 

100 105 110 200 Station 
Utg 8:00 Uitgeest 
Him 8:10 8:15 8:30 Haarlem 
Ass 8:30 8:35 8:45 Amsterdam Sloterdijk 
Asd 8:45 8:55 Amsterdam Central Station 

From the partial path Utg-Him (with train 100), train 105 is relevant and train 
200 is not relevant. However, using train 200 would give a path with a corrected end 
value of 9:10 (the end value of the path would be 8:55, the one train change would 
give the path a corrected end value of 9:10). The path we do find (with train 100, 105 
and 110) arrives at 8:45, and its two train changes give it a corrected end value of 
9:15. In order to find such a path with an optimal corrected end value, we must 
develop all later non-relevant edges, not allowing new train changes (i.e. along their 
macro operator). 
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12. Implementation 

In this chapter we shall discuss two implementation issues which both greatly 
influence the memory requirements and the (computational) speed of the 
algorithms discussed in the previous chapters. First we shall look at how a network 
can be represented in computer memory. Then we shall look at how the frontier (the 
collection F holding all tentatively labeled vertices) can be represented and handled 
when implementing a label setting algorithm (see chapter 3 for a discussion of label 
setting algorithms). 

12.1. Representing a network 

A network can be represented in computer memory in a number of ways. 
Without considering the actual search algorithm as such, an efficient representation 
of the network can speed up searching substantially. We distinguish four kinds of 
representation: 

(1) matrix representation; 
(2) ladder representation; 
(3) forward star representation; 
(4) sorted forward star representation. 

In our example representations we shall use the network of fig. 12.1. 

12.1.1. Matrix representation 

In a matrix representation, the network is represented by a 1V1 * IVI matrix. 
The matrix entry (i, j) contains the length of the edge connecting vertex i and vertex 
j if it exists; if the edge does not exists it contains 00. The space requirement of this 
representation is 1V12  times the space needed to store the attributes of an edge (the 
name and the length of an edge in a normal graph, the name and the start and end 
value of an edge in case of a discrete network). When the network is sparse, namely 

when the number of edges is significantly smaller than IVI 2, the matrix contains 00's 
for the larger part. Note that it is not possible to represent parallel edges in a normal, 

122 123 



V3 

Fig. 12.1. 

two dimensional matrix. If parallel edges occur, as in railway service networks, the 
matrix must either be made three dimensional or extra rows and columns must be 
added. The matrix representation of our example network looks as follows (an extra 
column for v2 is added to store the parallel edges from v1 to v2): 

v1 v2 e0 7 
v1 v2 e1 6 
V1 V3 e2 8 
v1 va e3 8 
v2 v1 ea 7 
V2 V4 e5 3 
V3 V4 eo 5 
va v1 e7 9 
V4 V2 es 4 

12.13. Forward star representation 

In a forward star representation the edges in the ladder are ordered on their 
start vertex, which is stored non-redundantly. An array and a list are used in this 
representation. The array is a pointer array of length 1 V1. The list is a linear list of 
length 1E1, describing the edges. Each entry contains the end vertex and the 
attributes of the edge. The elements of the pointer array indicate where in the list the 
edges departing from a vertex are stored. Apart from some gain in memory space, 
the advantage of this representation is the simplified searching procedure that can 
be used. In our algorithms we repeatedly have to determine the edges connecting the 
adjacent vertices of a particular vertex. The pointer array allows an efficient 
determination of these edges, without having to go through a (possibly sorted) list. 
The collection of adjacent vertices is called the forward star of a vertex. The forward 
star representation of our example network looks as follows: 

V1 V2 V2 V3 V4 

V1 00  e0 7 e1 6 e2 8 e3 8 

v2 ea 7 00 00 00 es 3 
V3  00 00 00 00 e6 5 

V4 e7 9 es 4 00 00 00 

12.1.2. Ladder representation 

In a ladder representation, all edges of the network are stored in a list, each 
entry consisting of the start vertex, the end vertex, the name and the length of an 

edge (or the start and end values of an edge in a discrete network). The list can be 
sorted on start vertex. The representation requires 1E1 times the space required to 
store one entry (the two vertices and the attributes of an edge). Obviously, the list is 
always completely filled. The start vertex is stored redundantly when many edges 
depart from a vertex. The ladder representation of our example network looks as 

follows: 

vi-). v2 e0 7 
v2 e1 6 
v3 e2 8 
V4 e3 8 

v2--> v1 ea 7 
V4 es 3 

v3-> V4 e6 5 
va-> v1 e7 9 

V2 es 4 

Note that, when many parallel edges occur (as in railway service networks), the end 
vertex is stored redundantly. This can be avoided by using the same approach for the 
storage of the end vertices as we used for the start vertices, and use a second pointer 
array. Such a representation of our example network looks as follows: 
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vi-' v2--> e0 7 
e1 6 

v3-> e2 8 
va-' e3 8 

V2-> Vi-'  ea 7 

v4-0 es 3 
v3-,. va-> e6 5 

va-> Vi-' e7 9 

v2-> ea 4 

12.1.4. Sorted forward star 

In a sorted forward star representation, all end vertices in the forward star of a 
vertex are sorted on increasing edge length. The sorted forward star representation 

of our example network looks as follows: 

1/1-> v2 ei 6 
v2 e0 7 
V3 e2 8 

va e3 8 

v2-> va es 3 
v1 ea 7 

V3-> V4 e6 5 

va-> V2 eg 4 

v1 e1 9 

In the Dantzig implementation of a label setting algorithm (see [Da, 1986]), 
when a vertex is made permanent, only the nearest vertex in the forward star of this 
vertex is visited. Because the nearest vertex of the forward star will get a smaller 
label than the other adjacent vertices, it will also be the first of these vertices to 
become permanent. When this vertex then actually becomes permanent, however, 
because this vertex was the only vertex that was visited from the forward star of its 
predecessor, the predecessor has to be checked again to determine the next vertex 
from the forward star to be visited (from the predecessor). 

For an example, suppose that in fig. 12.1, we search for a path from v1 to va. 
When v1 becomes permanent, only the nearest vertex in the forward star of Vi, v2, is 
visited and labeled 6. 'Then v2 becomes permanent. Since v2 was the only vertex from 
the forward star of v1 that was visited, we must now determine the next vertex from 
the forward star of vi: v3, which is visited and labeled 8. From v2, the first vertex from 
the forward star of v2, va is visited and labeled 9. Then v3  becomes permanent. Since 
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v3  was not the last vertex from the forward star of v1, we determine the next vertex to 
be visited from vi: va, which is visited and labeled 8. Furthermore, from v3, the first 
vertex of its forward star, va is visited and labeled 13. Then va becomes permanent 
and we have found a shortest path. In this example, only one vertex from the forward 
star of v2 and v3 needed to be visited, whereas in a usual implementation all vertices 
in the forward star of these vertices would have been visited. 

Of course, in a discrete dynamic network the edges can be sorted on shortest 
length and then on start value, however, since in a discrete network the distance to 
the next vertex not only depends on the length and the start value of an edge, but also 
on the current label of the source vertex, it is not possible to determine beforehand 
which vertex from the forward star will be nearest. So, if we want to use the Dantzig 
implementation in a discrete (dynamic) network, we must determine the nearest 
vertex in the forward star at run-time. 

12.2. Implementing the frontier 

Label setting algorithms select the vertex from the collection of tentatively 
labeled vertices (the frontier: the collection F in our descriptions of label setting 
algorithms, which include all algorithms we described for searching discrete and 
discrete dynamic networks), that has the smallest label (the currently shortest 
distance from the source vertex). Each vertex that is labeled is put in the frontier. So, 
in order to make access to the frontier efficient, it must be implemented in such a 
way that: 

(1) the vertex with the lowest label can be determined easily; 
(2) new elements can be readily inserted into the frontier. 

We shall discuss five ways to implement the frontier: 

(1) a sorted list; 
(2) a binary heap; 
(3) address calculation; 
(4) circular address calculation; 
(5) address calculation with buckets. 

In our discussion we shall use the following example and assume integer values. 
Suppose that we are searching some network for a shortest path from the source 
vertex to the goal vertex, and that at some time during search, the frontier consists of 
the following vertices: v0 with A(v0) = 25, v1 with A(vi) = 27, v2 with A(v2) = 27, v3 with 
A(v3) = 28, va with )(va) = 29, vs with ..(vs) = 30, v6 with 11(v6) = 32, v7 with 
1(v7) = 32, vs with A(vs) = 33, v9 with 1(v9) = 34 (see for example the figure of 
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v2 (27) 

/ \ 
v9  (34) 	v8  (33) 

va (29) v6 (32) 	 vs (30) 

v7  (32) 
Fig. 12.2. 

section 12.2.1). We shall show the frontier before the element with the smallest label 
(the vertex v0) is determined, after it has been removed, and after the next element vi0, 
with A(vi0) = 31, has been inserted. 

12.2.1. Sorted list v1 (27) V3  (28) 

A simple structure is to use a sorted list to represent the frontier. The list is 
sorted in ascending order with the vertex with the smallest label at the front. 
Inserting a new element into the frontier takes at most I FI comparisons (where 
F I is the number of elements in the frontier). Removing the vertex with the 

smallest label does not cost any comparisons. Before the vertex with the smallest 
label is determined, our example looks as follows: 

V0  Vi  V2  V 3  V4  V 5  V6  V7  Vg  V9  

25 27 27 28 29 30 32 32 33 34 

After the vertex with the smallest label (v0) has been removed, the frontier looks as 
follows: 

Vi  V2 V3 V4 V5 V6  V7 V8 V9 

27 27 28 29 30 32 32 33 34 

After vertex vi0 with label 31 has been added, the frontier looks as follows: 

v2 (27) 

vs (33) 	 va (29) v6 (32) 

V 3  (28) 

V5 (30) 

V1 V2 V3 V4 V5  V10 V6 V7 Vg  V9 

27 27 28 29 30 31 32 32 33 34 

12.2.2. Binary heap 

A more efficient way of implementing the frontier is to use a binary heap. A 
binary heap is a binary tree structure in which an element (of the tree) at a higher 
level has a smaller label than all other elements in its two subtrees. The vertex with 
the smallest label is the top element of the tree. Fig. 12.2 shows how the frontier 
might look like before the element with the smallest label is removed. 

When the element with the smallest label (the top element) is removed, its 
place is taken by the child element which has the smallest label of the two. This 
element in turn, is replaced by its child element with the smallest label, and so on, 
until the last level of the tree has been reached and the tree has been rearranged. 
Rearranging the tree in this way costs at most logs  I FS  comparisons. In our example, 

the top element v0 is replaced by V1, v1 by v2, v2 by vs. The tree then looks as in fig. 
12.3. 
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v9 (34) 	 v7 (32) 
Fig. 12.3. 

A new element is inserted at the first free leaf of the tree. Then the label of this 
element is compared to the label of its parent element. If the new element's label is 
smaller than the label of its parent, then the two elements are interchanged. Then its 
label is compared to the label of its new parent, and so on, until the label of the 
parent is smaller than the label of the new element (so there is no interchange 
necessary) or when the top of the tree has been reached. Rearranging the tree after 
inserting a new element takes at most log2IF I comparisons. In our example, vi0 is 
inserted as the second child of vs. Since its label is smaller than the label of vs, vi0 and 
v8  are interchanged. Since the new parent of vs, vs, has a smaller label than vi0, no 
next interchange is necessary, and the tree has been rearranged. The tree then looks 
as in fig. 12.4. 

129 



Vi --->V2 

V3 

V4 

Vs 

V9 

V0 

V5 

V6 )V7 

Vi --->V2 

V3 

V4 

V5 

vi0 

(33)  

(34)  

(35)  

(25)  

(26)  

(27)  

(28)  

(29)  

(30)  

(31)  

(32)  

V6 ---4V7 

Vs 

V9 

v2 (27) 

/ \ 
vi0 (31) 	 va (29) 

v9 (34) 	vs (33) v7 (32) 
Fig. 12.4. 

12.2.3. Address calculation 

Another efficient way of implementing the frontier is by means of address 
calculation (see [Di, 1969]). This structure consists of an array of all possible 
distances to the source vertex of the network. Linked to the elements of this array 
are the vertices in the frontier which have the corresponding distance to the source 
vertex. Our example frontier would look as in fig. 12.5. 

When the vertex with the smallest label is selected, the first non-empty element 
of the pointer array is determined and the vertex linked to it is removed. In our 
example the first non-empty element is the element labeled 25, pointing to v0. With 
v0 removed the frontier looks as in fig. 12.6. 

Fig 12.5. 

When inserting a vertex, it is linked to the element of the pointer array with the 
corresponding label by means of a pointer. When we add vi0, it is linked to the 
element labeled 31 of the pointer array. After the addition of vi0 the frontier looks as 
in fig. 12.7. 

Fig. 12.8. 

12.2.4. Circular address calculation 

In a large network, the pointer array used in address calculation will have large 
dimensions (the maximum shortest distance between any two vertices of the network 
is long). However, the relevant part of the array, storing all tentatively labeled 
vertices, has only /ma„ + 1 positions, where /m. is the maximum length of any edge 
from the network. It is the maximum distance any neighbour can be from any vertex. 

It is easily seen that the relevant part of the array is of length only lmax + 1, by the 
fact that in a label setting algorithm, the current vertex (the vertex that was made 
permanent most recently) is the vertex with the smallest label. No vertex with a 
larger label has been made permanent yet. So, no vertex which has not been made 
permanent yet, but which was visited from any of the vertices which were made 
permanent (and thus must be in the frontier), can have a label which is larger than 
the label of the current vertex plus the maximum distance any neighbour can be from 
any vertex. So, by using /max  elements, plus one element for the label of the current 
vertex (there may be multiple vertices with this label), we can limit the size of the 
pointer array to lin. + 1 elements. By subtracting the label of the current vertex from 
the label of the vertices which are visited, the address in the array of the new vertex 

V3 (28) 

v6 (32) 	 vs (30) 

(25)  

(26)  

(27)  

(28)  

(29)  

(30)  

(31)  

(32)  

(33)  

(34)  

(25)  

(26)  

(27)  

(28)  

(29)  

(30)  

(31)  

(32)  

(33)  

(34)  

 

Fig 12.6. 
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Fig. 12.7. 
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(33)  

(34)  

(35)  

(25)  

(26)  

(27)  

(28)  

(29)  

(30)  

(31)  

(32)  

Fig. 12.9. 

12.2.5. Address calculation with buckets 

can be calculated. Note that in a discrete network, the maximum distance any 
neighbour can be from any vertex, is the maximum edge length plus the maximum 
wait time (the difference between the start and end values). 

Suppose that in our example, lmax is 10. So, we need 11 elements for the pointer 
array. Before v0 is removed, the frontier looks as in fig. 12.8. After v0 has been 
removed the frontier looks as in fig. 12.9, after vi0 has been added it looks as in fig. 
12.10. 

(33)  

(34)  

(35)  

(36)  

(37)  

(27)  

(28)  

(29)  

(30)  

(31)  

(32)  

Fig. 12.10. 

When the pointer array used in address calculation is very large (because of a 
large 	the array may be sparsely filled. In that case it may be time consuming to 
find the first non-empty element. It may then be useful to split the array into 
segments or buckets. A bucket is a range of elements of the pointer array. When any 
element in the range of a bucket is non-empty, than that bucket is marked 
non-empty. To indicate whether a bucket is empty or not we use an array, each 
element representing a bucket. When searching for the first non-empty element of 
the pointer array, we first search for the first non-empty bucket, and then for the first 
non-empty element in the range of the bucket. For the bucket structure, we need an 
extra array of length (lmax  + 1)/w, where w is the range of the bucket (the bucket 
width). 
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12.3. Implementation of TRAINS 

For the representation of the railway service network in TRAINS, we use an 
adapted version of a sorted forward star. The edges in the forward star are ordered 
on start vertex, then on end vertex, then on length, and then on start value. This 
approach was chosen because in the algorithm for searching discrete dynamic 
network we repeatedly have to find all relevant edges from one vertex to a 
neighbour, given a certain arrival time. Since all edges are sorted on length (travel 
time), the length of a group of edges is stored only once, and of each edge only the 
start value is stored. The end value can be computed by adding the length to the start 
value. This way, storage space is saved. For example, the table containing all trains 
from Hlm to Ass departing between 5:00 and 9:00 looks as follows: 

Illm -> Ass 9 5:19 4804 
7:07 5410 
7:25 4812 
7:36 5412 
7:57 4814 
8:06 5414 
8:18 5014 
8:25 4816 
8:37 5416 

Ass 10 6:42 923 
6:53 4810 
7:12 825 
7:18 5010 
7:41 927 
7:48 5012 
8:12 829 
8:42 931 
8:50 5016 
8:57 4818 

Ass 11 5:45 4806 
Ass 13 6:23 4808 

First the departures and the identification numbers of the trains from Hlm to Ass 
with a travel time of 9 minutes are listed, then the trains from Hlm to Ass with a 
travel time of 10 minutes, then one train with a travel time of 11 minutes, and finally 
one with a travel time of 13 minutes. 

For the implementation of the frontier we have chosen circular address 
calculation. Since elements are added to the frontier very frequently, an efficient 
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determination of its place in the frontier is important. For reasons of future 
applications including airline schedules, we have chosen a frontier size of 24:00 
(which serves as an upper bound for the maximum travel and wait time for any 
connection). 

13. TRAINS, An Active System 

TRAINS is an implemented system which helps users find the fastest or most 
convenient train connections from any one station to any other station within The 
Netherlands. The entire Dutch railway services network is known to TRAINS, 
including special trains, connection times, restrictions, etc. TRAINS is currently 
being used at telephonic information centers of the Dutch railway company NS 
(Nederlandse Spoorwegen), and was recently introduced to the general public. Since 
TRAINS was intended to run on a personal computer, and had to be a complete 
system with a high performance, standard programming tools instead of tools such as 
fourth generation (database) languages or expert system shells were used to build 
TRAINS. Apart from a user friendly user-machine interface, TRAINS has an active 
component supplying useful alternate solutions in addition to the first and most 
apparent answer to the user's question. A "common sense" user model helps to select 
relevant information. The active component contributes significantly to the system, 
which is now highly valued by its users and well suited for everyday use. This chapter 
is largely similar to [Tu, 1989]. 

13.1. The theory of active systems: discontinuities 

The theory of active systems was first described in [Si, 1978]. A good review of 
active systems can be found in [Wa, 1985]. The theory of active systems is based on 
discontinuities : a small change in the question may yield a large favourable change 
in the answer. It is easily seen that the domain of TRAINS, namely passenger 
transportation by train, exhibits discontinuities. It may be that a slow train with a 
travel time of 30 minutes departs at 10:00, while at 9:55 some very fast train with a 
travel time of 15 minutes leaves. So, a change of 5 minutes in the question (from a 
departure at 10:00 to a departure at 9:55) will give a change of 15 minutes in the 
answer (from 30 to 15 minutes in travel time). The metrics in both the question 
(what is "small") and the answer (what is "better") are user dependent. 
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13.2. The necessity of active behaviour 

A user of a question-answering system seldom has a perfectly well-defined 
question, and seldom is this question definite. A precise question is posed because it 
is required. Indeed, we suspect that users usually overspecify their questions partly 
due to habit, partly due to requirements of the system. A system must have an exact 
value to work with, so the user gives some value which she thinks is a reasonable one. 
Given sufficient motivation, such as an answer which suits her better, she may 
change her question. Even if she chooses not to, the information should be provided 
so that the user can make a decision based on sufficient relevant information. In our 
implementation of TRAINS, we have assumed that the user does not know exactly 
when she wants to leave or arrive until she has seen the exact possibilities, which the 
system should provide. 

133. The dimensions of a topic 

The original definition of the theory of active systems states that a system should 
provide additional information when, and only when, a small change in the question 
results in a large positive change in the answer. But what is a small change in the 
question? And what is a positive change in the answer? And when is this change a 
large change? There may be many aspects of an answer which may influence the 
decision whether a change is positive or not, or whether it is a large or small 
improvement. These aspects are the attributes of the topic. Each of these attributes 
can be called a dimension of the topic. With this concept of a topic having multiple 
dimensions, a question and an answer can be viewed as points in a multi-dimensional 
space of possibilities. 

In TRAINS, the topic is travel by train. The possible dimensions include the 
total travel time, the exact time of departure, the exact time of arrival, the number of 
train changes, the service available on the train (such as a dining car or the 
availability of a telephone), the route of the journey (the scenery) etc. In our 
implementation of TRAINS we limited the number of dimensions to the first four. 

13.4. Active behaviour 

In active behaviour we distinguish three phases: 

(1) the subject focusing phase, 
(2) the initial answer, 
(3) searching for alternate solutions. 

We shall now look at each phase in turn. 
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13.4.1. Subject focusing 

When a user queries a question answering system, first she will formulate a 
question. In a conventional question answering system the question is treated as a 
precise definition of which information the user requires. In an active question 
answering system, the question is treated as a loose indication of what the user wants 
to know. In this phase, called the subject focusing phase, the user provides 
information which determines the most important dimensions of the question. 

13.4.2. The initial answer 

After the user has posed the question, the system starts searching for an answer 
best satisfying this initial question. This answer is given to the user. Usually this 
answer is the same answer as a conventional system would give. However, 
sometimes it may be best to avoid answering the initial question, and move directly 
to alternate solutions. 

13.43. Searching for alternate solutions 

After the answer to the initial question has been given, a conventional system 
stops. An active system starts "moving" the question along the most important 
dimensions, looking for favourable changes in answers. If a favourable change 
occurs, additional information is given to the user. Of course, this "moving" requires 
efficient search. Each slight move of the question along its dimensions results in a 
new question. This question needs to be answered internally in order to decide 
whether it yields a favourable change. 

13.5. Discontinuity conflicts 

It may be that a small change in the question results in large changes in multiple 
dimensions of the answer. Suppose large changes occur in two of the dimensions of 
the answer: one favourable and one unfavourable. For example, an alternate trip 
requires 15 minutes less travel time, but with two additional train changes. Is this a 
favourable change in answer? Should it be mentioned to the user? It is not possible 
to decide in general: it depends on the relative importance to the user of the 
dimensions travel time and number of train changes. Sometimes, some dimensions 
seem to be almost indistinguishable but there may be subtle differences in the 
metric, depending on the user. Consider for instance, the dimension travel time and 
the dimension time of arrival. The dimension travel time is easily measured and 
valued in terms of appreciation. Usually, less travel time is a positive change, more 
travel time is a negative change. But this is not the case with the dimension time of 
arrival. The level of appreciation depends on secondary conditions only known to 
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the user. If a user asks for a trip arriving at 9:55, an arrival at 10:05 may be unsuitable 
because she has a business appointment at 10:00. In that case an arrival at 9:40 may 
be the better possibility. However, if the goal of the trip is to go shopping, and if the 
shops do not open until 10:00, then the arrival at 10:05 could be perfectly acceptable. 

13.6. User models 

From the previous example it is seen that the metrics of the dimensions can be 
very much user dependent. For one user, a change in the answer may be an 
improvement, for another it may not, depending on the goal of the trip, or the level 
of experience in travelling by train (changing trains etc.), or even on the character or 
mood of the user. So, to be able to judge whether a change in the question is small, 
whether a change in the answer is large and favourable, and to be able to resolve 
discontinuity conflicts (in short: to judge whether an alternate solution is "better" or 
"near" the initial solution), we need a model of the user. There are two ways of 

dealing with user models: 

(1) using predetermined models or user categories, 

(2) building a model for each specific user. 

Using predetermined user models means that during the subject focusing phase 
a user is classified into a category. We could have different categories for business 
travellers, students, elderly people, etc. When we build a user model for each 
specific user, for each new user a new user model is built in an interactive process. 

13.7. The application of TRAINS 

In the application of TRAINS, a user calls an NS telephone information center 
and asks for information about a trip from one station to another, giving a desired 
time of departure or arrival. Usually no additional information is supplied by the 
caller. There is a shortage of information, not enabling the system to classify the user 
or to build a user model. Of course, more information could be asked from the user 
but that would be undesirable. Most callers would not appreciate a complete 
questionnaire before their question is answered (the call is not even toll free!), and 
a user may become suspicious, feeling that her privacy is being invaded. 

13.8. The user model in TRAINS 

As we have seen in the previous section, either determining or building a user 
model before searching for a solution is not practical for our application. Another 
possibility might be to build the user model as we are going along. If a decision about 
what is "near" or "better" is necessary, a question could be put to the user. For  

example, we could ask whether she favours fewer train changes or less travel time. 
But in that case, the user will probably reply that she cannot say in general and needs 
to know the exact possibilities to decide. A better approach would be to give the 
alternate solution right away, and ask the user whether it represents an 
improvement. From her answer, her (user) model could be modified. But then, we 
might just as well have given this alternate solution directly and let the user herself 
judge whether it is an improvement or not, without having to communicate her 
decision to the system. Of course, there is the danger of flooding her with many 
possible solutions, most undesirable! In TRAINS we have found a compromise: a 
rudimentary user model is implemented, incorporating some "common sense" about 
what might be an improvement to a user and what not. This rudimentary user model 
is sufficiently general to allow solutions which are of interest to essentially all users, 
and restrictive enough to prevent flooding her with possibilities. From the solutions 
suggested, she chooses the one which suits her best. 

13.9. Relevant solutions 

TRAINS' user model judges, for every alternate solution found, whether it may 
be relevant to a user or not. Relevant solutions are communicated to the user who 
decides which one is best for her. In this way, the system supplies everything likely to 
be necessary for the caller to make a decision with full knowledge of sufficient 
relevant information. A relevant solution is (recursively) defined as follows: 

• The initial best solution is a relevant solution. If the user had given a desired 
departure time, the initial best solution makes her leave at or after this desired 
departure time and arrive at her destination as early as possible, with a trip of 
shortest duration (given that arrival time). Notice that in this way, she will leave 
as late as possible as long as she still arrives at the above earliest arrival time. (If 
the user had given a desired time of arrival, the initial best solution makes her 
depart as late as possible but still arrive before or at her desired arrival time, and 
given this departure time, will make her arrive as early as possible. Again, the 
journey has a minimal duration given the departure time). In case of ties, the route 
with the fewest train changes is preferred. 

• Every solution with both the time of arrival and the time of departure different 
from those of another relevant solution is a relevant solution, provided that either: 

Both its departure and its arrival are earlier than the corresponding values of a 
relevant solution. 

or 
Both its departure and its arrival are later than the corresponding values of a 
relevant solution. 
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Every solution with a departure equal to or earlier than, and/or an arrival equal 
to or later than the corresponding values of a relevant solution, is relevant if it 
has fewer train changes. 

This way, first an optimal solution best satisfying the user's wishes is shown. 
Then trips are shown which have different times of departure and arrival and which 
are not just worse versions (in travel time) of relevant solutions already found. 
Finally, solutions which are worse versions (in travel time) of relevant solutions are 
shown if they have fewer train changes. These solutions exhibit discontinuity 
conflicts: more travel time but fewer train changes. It is left to the user to decide. 

The interval that is searched for relevant solutions is determined by applying an 
heuristic formula taking into account such facts as the duration of the initial best 
solution, the amount of time the initial best solution differs from the user's question, 
etc. As a rule, always at least one alternate solution before and one after the initial 
best solution is given. To prevent too many alternate solutions, at most three 
time-different relevant solutions (see the second clause of the definition of relevant 
solutions) before and three after the initial best solution are given, and in addition, 
per initial best solution and time-different relevant solution, one non-time-different 
relevant solution with fewer train changes is allowed (see the third clause of the 
definition of relevant solutions). 

13.10. An example 

For an example (taken from the 1990/1991 NS service), suppose we want to 
travel from Hengelo (Hgl, see fig. 13.1) to Maastricht (Mt), departing at or after 
9:00. There are four routes possible: 

(1) via Almelo (Anil), Deventer (Dv), Amersfoort (Amf), Utrecht (Ut), 's 
Hertogenbosch (Ht), Eindhoven (Ehv), Roermond (Rm) and Sittard (Std), 
covering a (tariff) distance of 310 km, 

(2) via Anil, Dv, Zutphen (Zp), Arnhem (Ah), Nijmegen (Nm), Venlo (Vl), Rm and 
Std, covering a (tariff) distance of 247 km, 

(3) via Goor (Go), Zp, Ah, Nm, Vl, Rm and Std, covering a (tariff) distance of 223 
km. 

(4) via Go, Zp, Ah, Nm, Ht, Ehv, Rm and Std, covering a (tariff) distance of 266 km. 

If our traveller wants to leave at 9:00, we look in the neighbourhood of 9:00 and find 
the following trip possibilities: 

Fig. 13.1. The Dutch railway service network 
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Departure Arrival Time Dist. Changes Route Relevant 
(1) 8:06 12:04 3:58 247 Dv, Nm, Rm (2) 
(2) 8:06 12:04 3:58 310 Ut (1) 
(3) 8:36 12:41 4:05 310 Amf, Ut, Std (1) 
(4) 8:45 12:41 3:56 266 Zp, Ht, Std (4) 
(5) 8:45 12:41 3:56 223 Zp, Ah, Rm (3) 
(6) 9:06 13:04 3:58 310 Ut (1) 
(7) 9:06 13:04 3:58 247 Dv, Nm, Rm (2) 
(8) 9:36 13:41 4:05 310 Amf, Ut, Std (1) 
(9) 9:45 13:41 3:56 223 Zp, Ah, Rm (3) 

(10) 9:45 13:41 3:56 266 Zp, Ht, Std (4) 
(11) 10:06 14:04 3:58 310 Ut (1) 
(12) 10:06 14:04 3:58 247 Dv, Nm, Rm (3) 

Of these 12 possible solutions only 5 are relevant. Possibility (6) is the initial best 
solution. Solution (7) is rejected because it departs and arrives at the same times as 
the initial best solution, but has more train changes. 

Searching before the initial best solution, solution (5) is found and accepted. 
Solution (4) is rejected because it departs and arrives at the same times as (5), and has 
the same number of train changes. Solution (3) is rejected because it departs earlier 
than (4), but arrives at the same time with an equal number of train changes. Solution 
(2) is found and accepted. Solution (1) is rejected because it departs and arrives at the 
same times as solution (2), but has more train changes. 

Searching after the initial best solution, solution (9) is found and accepted. 
Solution (8) is rejected because it departs earlier than (9), arrives at the same time 
and has the same number of train changes. Solution (10) is rejected because it departs 
and arrives at the same times as (9), with the same number of train changes. Solution 
(11) is found and accepted. Solution (12) is found and rejected, because it departs and 
arrives at the same times as (11), but has more train changes. 

If one asks TRAINS for advice on travelling from Hengelo to Maastricht, 
departing at 9:00, solutions (2), (5), (6) and (9) are suggested. Solution (11) is not 
given since it departs outside the interval considered for alternate solutions (in this 
example all departures between 8:00 and 10:00). For more examples of TRAINS' 
active behaviour see chapter 14, Results. 
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14. T A NS, Results 

In this chapter we shall look at some examples obtained from the TRAINS 
system. We shall look at the effects of the techniques described in the previous 
chapters by examining four example questions. We shall also look at the practical 
advantages of the TRAINS system. For the examples we make use of the TRAINS 
system as it was first sold as an official NS (Nederlandse Spoorwegen; Dutch 
Railways) product ("NS Reisplanner", NS Travel Planner), in May 1990. 

14.1. The program 

The program was written in the C programming language (ANSI standard), and 
consists of approximately 10 000 lines of code, divided into 7 modules. The program 
was developed using a prototyping method. The development of the system 
(including the programs providing interfaces to existing database systems) took 
about 4 man years. The first professionally used prototype was released in May 1988. 
The program was first released commercially in May 1990. The program is currently 
(September 1990) running on Atari ST, IBM PC (MS DOS), and UNIX computer 
systems. 

14.1.1. The techniques used 

The (discrete dynamic) network representation of chapter 5 is used to represent 
the railway service network. The algorithm used to search the network is an 
implementation of the algorithm described in chapter 6. SRM has been 
implemented as a single pass process. The loosening of the idealized solution (see 
section 8.3.3), has been implemented in such a way that in practice, optimal solutions 
are never missed (i.e. 'loose' enough). The coefficientp, which is used to determine 
the maximum detour, is set to 0.4. The allowed detour is set to at least 20 minutes 
and may not exceed 60 minutes. These figures were determined empirically. The 
Idealized Skeleton Graph contains the information of the fastest trains running 
between the different stations. The ISG is constructed automatically and only once 
for the network and is stored together with the actual time-table information. The 
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ISG consists of about 450 stations and some 500 edges. In our implementation of 
SRM we do not cut off any dead-end branches in the search space. As a result of 
applying SRM, all stations in the search space have estimates of remaining travel 
time. These estimates are used in an A* extension (DYNET*) as described in 
chapter 9. The techniques to adapt the searching algorithm to offset vertices 
described in chapter 10, were also implemented. The determination of offset 
vertices is not automatic and is done by hand. The techniques described in chapter 
11 are used to minimize train changes and to find suboptimal solutions with fewer 

train changes. 

14.2. The network 

The network contains all stations, trains, ferries and buses which are published 
in the official 1990 - 1991 NS time-tables (about 750 pages). Apart from all national 
trains, the network also contains the most important international trains to 
neighbouring countries, the most important ferries and some intercity bus links. In 
total the network has 469 stations: 396 Dutch stations (both railway stations and bus 
and ferry terminals) and 73 stations in neighbouring countries. Using the techniques 
described in chapter 10, 235 stations could be made offset stations (vertices) and 234 
stations had to be node stations. The network contains the information of over 
44 000 departures. Only 27 000 departures are departures from node stations. Binary 
coding techniques are used to store the network using the representation techniques 
described in chapter 12. The binary representation of the network requires a storage 
space of 251 820 bytes. At run-time, the entire network is kept in core memory. 

143. The example questions 

For the examples we shall look at four queries: one short trip, one medium trip 
and two longer trips. The short trip is from Heemskerk (Hk, see fig. 14.1) to 
Amsterdam CS (Asd), the medium trip from Hoorn (Hn) to Den Haag HS (Gv), the 
longer trips from Den Haag CS (Gvc) to Blerick (Br) and from Vlissingen (Vs) to 
Zwolle (Z1). For each query we shall look at the answers the system generates, the 
estimates and search space which are determined using SRM, and how the answers 
can be found using the conventional (paper) time-tables. The performance aspects 
and the computational effects of SRM and DYNET* are discussed in a separate 

section for all examples. 

143.1. Heemskerk to Amsterdam CS 

For a trip from Heemskerk to Amsterdam CS, the estimated travel time 
determined in SRM is 25 minutes. The upper bound is determined to be 45 minutes: 

144  

the estimated travel time of 25 minutes plus the minimum detour of 20 minutes. The 
search space consists of 13 node stations, 5.5 percent of the total network. The search 
space is given in fig. 14.2, including the relevant offset stations. 

For a trip from Heemskerk (Hk, see fig. 14.2) to Amsterdam CS (Asd) two 
routes appear to be relevant: route 1 (26 tariff kilometers) via Uitgeest (Utg), 
Zaandam (Zd) and Amsterdam Sloterdijk (Ass) and route 2 (35 km) via Haarlem 
(Him) and Ass. For a trip departing at 8:00 the following trip possibilities are 
suggested: 

Departure Arrival Time Dist. Changes Route 
(1)  7:27 8:05 0:38 26 Utg 	(1) 
(2)  7:32 8:11 0:39 35 (2) 
(3)  7:57 8:35 0:38 26 Utg 	(1) 
(4)  8:02 8:41 0:39 35 (2) 
(5)  8:27 9:05 0:38 26 Utg 	(1) 
(6)  8:32 9:14 0:42 35 (2) 

Solution (4) is the initial solution, the other solutions are suggested as alternate 
solutions. 

If the conventional time-tables are used to find solutions, then for a solution 
using route (1), say solution (3), two tables must be used. Table 42 a (see fig. 14.3) is 
used to find train 4829 from Hk to Utg, departing at 7:57 and arriving at 8:02. Then 
table 40 b (see fig. 14.4) is used to find train 14718 from Utg to Asd, departing at 8:07 
and arriving at 8:35. For a solution using route (2), say solution (4), only one table 
needs to be used. Table 42 b (see fig. 14.5) is used to find train 4816 from Hk to Asd, 
departing at 8:02 and arriving at 8:41. 

14.3.2. Hoorn to Den Haag HS 

For a trip from Hoorn to Den Haag HS, the estimated travel time determined 
in SRM is 62 minutes. The upper bound is determined to be 87 minutes: the 
estimated travel time of 62 minutes plus 40 percent. The search space consists of 33 
node stations, 14 percent of the entire network. The search space is given in fig. 14.6, 
including the relevant offset stations. 

For a trip from Hoorn (Hn, see fig. 14.6) to Den Haag HS (Gv) two routes 
appear to be relevant: route 1 (97 km) via Purmerend (Pmr), Zaandam (Zd), 
Amsterdam Sloterdijk (Ass), Haarlem (Him), Leiden (Ledn) and route 2 (105 km) 
via Pmr, Zd, Ass, Amsterdam CS (Asd), Schiphol (Shl) and Ledn (the detour from 
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Ass to Asd is necessary since the intercity train from Asd to Gv via Shl does not stop 
at Ass). For a trip departing at 9:00 the following trip possibilities are suggested: 

Departure Arrival Time Dist. Changes Route 
(1) 8:15 9:41 1:26 105 Asd (2) 
(2) 8:37 9:56 1:19 97 Ass (1) 
(3) 8:45 10:11 1:26 105 Asd (2) 
(4) 9:07 10:26 1:19 97 Ass (1) 
(5) 9:37 10:56 1:19 97 Ass (1) 

Solution (4) is the initial solution, the other solutions are suggested as alternate 
solutions. Note the absence of a trip possibility at 9:15 and 9:45. The solutions at :15 
and :45 are only possible in the early rush hours due to extra trains. 

If the conventional time-tables are used to find solutions, then one is easily 
deceived by the layout of the time-tables. Amongst others, for the relation Hn - Gv 
connections via Alkmaar (Amr, see fig. 14.6), Beverwijk (Bv), Hlm and Ledn, are 
listed in table 41 b. However, all the listed connections from Hn to Gv are 
suboptimal! Let us consider the case of a departure at 9:00. Then table 41 b (see fig. 
14.7) lists a connection departing at 9:05 (train 5539) and arriving at 10:41, changing 
to train 2139 at Ledn. By using two different tables, however, it is possible to find 
solution (4), which departs 2 minutes later and arrives 15 minutes earlier, also with 
one train change! For finding this solution, using route (1), table 40 b (see fig. 14.8) 
is used to find train 4522 from Hn to Ass, departing at 9:07 and arriving at 9:38. Note 
that since Hn is listed three times in table 40 b, and the lowest entry needs to be used, 
it is not easily found. Especially since the 9:05 train (5539) is also listed, but at the 
top. Then table 10 a (see fig. 14.9) is used to find train 5439 from Ass to Gv, 
departing at 9:45 and arriving at 10:26. For a solution using route (2), say solution 
(3), table 40 b (see fig. 14.10) is used to find train 14522 from Hn to Asd, departing 
at 8:45 and arriving at 9:18. Then table 10 a (see fig. 14.9) is used to find train 159 
from Asd to Gv, departing at 9:26 and arriving at 10:11. 

14.33. Den Haag CS to Blerick 

For a trip from Den Haag CS to Blerick, the estimated travel time determined 
in SRM is 110 minutes. The upper bound is determined to be 154 minutes: the 
estimated travel time of 110 minutes plus 40 percent. The search space consists of 
101 node stations, 43 percent of the entire network. The search space is given in fig. 
14.11, including the relevant offset stations. 

For a trip from Den Haag CS (Gvc, see fig. 14.11) to Blerick (Br) three routes 
appear to be relevant: route 1 (190 km) via Zoetermeer (Ztm), Gouda (Gd), 
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Utrecht CS (Ut), 's-Hertogenbosch (Ht), Eindhoven (Ehv), route 2 (181 km) via 
Rotterdam CS (Rtd), Dordrecht (Ddr), Breda (Bd), Ehv and route 3 (196 km) via 
Ztm, Gd, Ut, Arnhem (Ah), Nijmegen (Nm). For a trip departing at 9:00 the 
following trip possibilities are suggested: 

Departure Arrival Time Dist. Changes Route 
(1) 7:59 10:38 2:39 181 (2) 
(2) 8:19 10:38 2:19 190 Ut, Ehv (1) 
(3) 8:35 11:16 2:41 196 Ut, Ah (3) 
(4) 8:59 11:38 2:39 181 (2) 
(5) 9:19 11:38 2:19 190 Ut, Ehv (1) 
(6) 9:35 12:16 2:41 196 Ut, Ah (3) 

Solution (5) is the initial solution, the other solutions are suggested as alternate 
solutions. Note that solution (1) and (4) are suboptimal alternate solutions with 
fewer train changes to solutions (2) and (5) respectively. 

If the conventional time-tables are used to find solutions, then for a solution 
using route (1), say solution (5), three tables must be used. Table 30 a (see fig. 14.12) 
is used to find train 2833 from Gvc to Ut, departing at 9:19 and arriving at 10:01. 
Then table 20 a (see fig. 14.13) is used to find train 833 from Ut to Ehv, departing at 
10:04 and arriving at 10:57. Table 50 a (see fig. 14.14) is used to find train 1933 from 
Ehv to Br, departing at 10:59 and arriving at 11:38. For a solution using route (2), say 
solution (4), only one table needs to be used. Table 50 a (see fig. 14.14) is used to find 
train 1933 directly from Gvc to Br, departing at 8:59 and arriving at 11:38. Note that 
this train is spread across two colunms without changing trains! For a solution using 
route (3), say solution (3), table 30 a (see fig. 14.15) is used to find train 529 from Gvc 
to Ut, departing at 8:35 and arriving at 9:17, and to find the connecting train 2929 
from Ut to Ah, departing at 9:20 and arriving at 9:55. Table 51 a (see fig. 14.16) is 
used to find train 6235 from Ah to Br, departing at 10:06 and arriving at 11:16 (the 
11:17 listed in this table is in fact the departure time of this train from Br; the 
TRAINS system uses the NS database which contains both the time of arrival and the 
time of departure at a station). 

14.3.4. Vlissingen to Zwolle 

For a trip from Vlissingen to Zwolle, the estimated travel time determined in 
SRM is 170 minutes. The upper bound is determined to be 230 minutes: the 
estimated travel time of 170 minutes plus the maximum detour of 60 minutes. The 
search space consists of 109 node stations, 46 percent of the entire network. The 
search space is given in fig. 14.17, including the relevant offset stations. 
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Departure Arrival Time Dist. Changes Route 
(1) 11:20 14:46 3:26 276 Rsd, Rtd, Amf (1) 
(2) 11:20 15:10 3:50 280 Rsd (2) 
(3) 11:56 15:14 3:18 276 Rtd (1) 
(4) 12:20 15:46 3:26 276 Rsd, Rtd, Amf (1) 
(5) 12:20 16:10 3:50 280 Rsd (2) 
(6) 12:56 16:14 3:18 276 Rtd (1) 

Solution (4) is the initial solution, the other solutions are suggested as alternate 
solutions. Note that solution (2) and (5) are suboptimal alternate solutions with 
fewer train changes to solutions (1) and (4) respectively. 

If the conventional time-tables are used to find solutions, then again the layout 
may be somewhat deceiving. For the relation Vs - Zl connections via route (2) are 
listed in table 60 b (see fig. 14.18). However, only some of the listed connections 
from Vs to Zl are suboptimal solutions with fewer train changes at best! Let us 
consider the case of a departure at 11:50. Then table 60 b (see fig. 14.18) lists a 
connection departing at 11:56 (train 2140) and arriving at 15:43, changing to train 
4646 at Rsd. By using two different tables, however, it is possible to find solution (3), 
which departs at the same time (using in fact, the same train from Vs), but which 
arrives 29 minutes earlier, also with one train change! For finding this solution, using 
route (1), table 10 b (see fig. 14.19) is used to find train 2140 from Vs to Rtd, 
departing at 11:56 and arriving at 13:32. Then table 80 a (see fig. 14.20) is used to find 
train 549 from Rtd to Zl, departing at 13:39 and arriving at 15:14. For a solution 
using route (2), say solution (5), table 60 b (see fig. 14.18) is used to find train 14648 
from Vs to Rsd, departing at 12:20 and arriving at 13:19. Then the same table is used 
to find train 4648 from Rsd to Zl, departing at 13:25 and arriving at 16:10. Note that 
solution (6) departs 36 minutes later while it arrives only 4 minutes later. 
Furthermore solution (4) departs at the same time, but arrives 24 minutes earlier, 
requiring 2 more train changes (this solution can be found by using table 10 b for the 
part Vs - Rsd - Rtd and table 80 a for the part Rtd - Amf - Z1). 
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14.4.1. Computational effects 

In order to measure the effects of SRM and DYNET* we shall look at the 
amount of computation it took to find the initial solution of the four examples from 
the previous sections. The amount of computation is measured by the number of 
paths which became branching paths in step (3) of both the forward and the 
backward pass of the algorithm to search discrete dynamic networks (see section 
6.6), and by the number of partial paths which were put in the frontier F in step (5). 
For each solution, we measured the computational effort, both with and without the 
SRM and DYNET* techniques. 

First we consider the amount of computational effort necessary to find the 
fastest (initial) solution, without searching for an alternate suboptimal solution with 
fewer train changes. For the example Heemskerk to Amsterdam CS the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 6 5 23 

SRM + DYNET 6 5 21 
DYNET* 4 5 20 

SRM + DYNET* 4 5 18 

For the example Hoorn to Den Haag HS the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 33 6 79 

SRM + DYNET 22 6 39 
DYNET* 11 6 44 

SRM + DYNET* 11 6 39 

For the example Den Haag CS to Blerick the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 179 12 261 

SRM + DYNET 129 12 168 
DYNET* 61 9 153 

SRM + DYNET* 61 9 136 
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14.4. Performance For a trip from Vlissingen (Vs, see fig. 14.17) to Zwolle (Z1) two routes appear 
to be relevant: route 1 (276 km) via Roosendaal (Rsd), Rotterdam CS (Rtd), Gouda 
(Gd), Utrecht CS (Ut) Amersfoort (Amf) and route 2 (280 km) via Rsd, Breda (Bd), 
's-Hertogenbosch (Ht), Nijmegen (Nm), Arnhem (Ah), Zutphen (Zp). For a trip 
departing at 12:00 the following trip possibilities are suggested: 

In this section we shall look at the performance aspects of the algorithms used 
in TRAINS. First we shall look at the computational effects of the different 
techniques used, and then at the time requirements. The examples from the previous 
sections will be used. 



For the example Vlissingen to Zwolle the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 157 11 227 

SRM + DYNET 129 11 176 
DYNET* 27 11 105 

SRM + DYNET* 27 11 103 

We now consider the amount of computational effort necessary to find not only 
the initial solution, but also (if possible) an alternate suboptimal solution with fewer 
train changes (using the techniques described in chapter 11). For the example 
Heemskerk to Amsterdam CS the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 5 7 42 

SRM + DYNET 5 7 35 
DYNET* 4 6 40 

SRM + DYNET* 4 6 33 

For the example Hoorn to Den Haag HS the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 36 7 149 

SRM + DYNET 26 7 68 
DYNET* 19 7 97 

SRM + DYNET* 19 7 88 

For the example Den Haag CS to Blerick the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 303 14 484 

SRM + DYNET 208 14 286 
DYNET* 129 10 371 

SRM + DYNET* 128 10 325 

For the example Vlissingen to Zwolle the results are: 

Techniques used branch paths fwd branch paths bkwd paths in frontier 
DYNET 216 46 411 

SRM + DYNET 192 46 326 
DYNET* 49 32 281 

SRM + DYNET* 49 32 269 
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14.4.1.1. DYNET* versus SRM 

From these figures it can be seen that the DYNET* extension is most important 
for reducing the search necessary to find solutions. SRM is less effective than 
DYNET* in reducing the number of branching paths. When DYNET* is used, SRM 
does not much reduce the number of branching paths further. This is not surprising 
since both SRM and DYNET* use the same information about estimates of 
remaining travel time, and since the upper limit estimate used in SRM is much 
coarser than the combination of actual time and estimates in DYNET*, which 
gradually gains more actual time information during search, and has to rely on 
estimates less and less. However, SRM does reduce the number of paths that are 
developed and put in the frontier, but which are never made a branching path. SRM 
prevents the development of paths which DYNET* would develop, put in the 
frontier, and successively deem unpromising. Furthermore, because of the (guided) 
depth first nature of DYNET*, relabeling occurs more often. In our implementation, 
relabeling means that a new path has to be added to the frontier. Therefore, 
DYNET* may require more paths to be put in the frontier. This is especially clear in 
the example Hoorn to Den Haag HS. 

14.4.1.2. Limiting the backward search 

It can be seen from the results that the techniques used to limit the (second) 
backward search by using information from the (first) forward search (see chapter 
4), are very effective in case of a more complex question. With less complex 
problems, SRM and DYNET* do not further improve the second pass much. The 
accurate information from the first pass replaces the much coarser estimates used in 
SRM and DYNET*. 

14.4.2. Time requirements 

We now look at the time requirements and savings of the different techniques. 
For each example problem we have measured the amount of time that is required to 
compute the SRM search space and the amount of time that is required to compute 
estimates for DYNET* for the entire network. If SRM is used, for all vertices in the 
search space the estimates for DYNET* are generated as a side effect and the 
DYNET* computation does not need to be performed. Furthermore we have 
measured the time that is required to find the initial solution and the time to find all 
solutions necessary to completely answer a user's question. Note that more solutions 
may be found than those which are actually suggested to the user. For each example 
the required time is measured both with and without making use of the SRM and 

151 



Techniques used first solution all solutions 
DYNET 1.49 6.51 

SRM + DYNET 1.04 4.85 
DYNET* 0.68 2.77 

SRM + DYNET* 0.62 2.63 
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DYNET* techniques. Only the pure searching time is measured, not including the 
time required for input and output. The measurements were performed on an Atari 
ST computer with an 8 Mhz Motorola MC 68000 micro processor, using a 200 Hz 
system timer. 

First we consider the time required to find only the fastest solutions, without 
also searching for suboptimal solutions with fewer train changes. 

For the example Heemskerk to Amsterdam CS it took 0.19 seconds to compute the 
DYNET* estimates for the entire network, and 0.05 seconds to compute the SRM 
search space. Note that, since SRM also determines the DYNET* estimates for the 
vertices in the search space, if SRM is applied, the DYNET* estimates do not have 
to be computed for the entire network. The other results are (in seconds): 

Techniques used first solution all solutions 
DYNET 0.10 2.52 

SRM + DYNET 0.09 1.00 
DYNET* 0.08 1.00 

SRM + DYNET* 0.08 0.85 

For the example Hoorn to Den Haag HS it took 0.19 seconds to compute the 
DYNET* estimates and 0.10 seconds to compute the SRM search space (including 
the DYNET* estimates for the vertices in the search space). The other results are (in 
seconds): 

Techniques used first solution all solutions 
DYNET 0.41 5.30 

SRM + DYNET 0.28 2.15 
DYNET* 0.24 1.82 

SRM + DYNET* 0.22 1.65 

For the example Den Haag CS to Blerick it took 0.19 seconds to compute the 
DYNET* estimates and 0.17 seconds to compute the SRM search space (including 
the DYNET* estimates for the vertices in the search space). The other results are (in 
seconds): 

For the example Vlissingen to Zwolle it took 0.19 seconds to compute the DYNET* 
estimates and 0.17 seconds to compute the SRM search space (including the 
DYNET* estimates for the vertices in the search space). The other results are (in 
seconds): 

Techniques used first solution all solutions 
DYNET 1.36 9.00 

SRM + DYNET 1.15 6.85 
DYNET* 0.49 3.17 

SRM + DYNET* 0.48 3.06 

We now consider the time required to find not only the fastest solutions, but also 
(if possible) suboptimal solutions with fewer train changes (using the techniques 
described in chapter 11). For the example Heemskerk to Amsterdam CS the results 
are (in seconds): 

Techniques used first solution all solutions 
DYNET 0.17 6.21 

SRM + DYNET 0.15 1.79 
DYNET* 0.16 2.13 

SRM + DYNET* 0.15 1.68 

For the example Hoorn to Den Haag HS the results are (in seconds): 

Techniques used first solution all solutions 
DYNET 1.14 13.35 

SRM + DYNET 0.77 5.72 
DYNET* 0.87 5.19 

SRM + DYNET* 0.83 4.49 

For the example Den Haag CS to Blerick the results are (in seconds): 

Techniques used first solution all solutions 
DYNET 6.64 23.56 

SRM + DYNET 4.08 16.99 
DYNET* 3.17 10.70 

SRM + DYNET* 2.99 10.25 

For the example Vlissingen to Zwolle the results are (in seconds): 
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Techniques used first solution all solutions 
DYNET 4.79 27.80 

SRM + DYNET 4.14 22.05 
DYNET* 1.91 9.75 

SRM + DYNET* 1.85 9.40 

From the measurements it can be seen again that the DYNET* extension using 
the fastest train estimates is most effective in reducing running times. With less 
complex problems, applying SRM with the determination of both the search space 
and the DYNET* estimates for the vertices in the search space, is more efficient 
than the determination of the DYNET* estimates for the entire network only. In 
fact, determining the SRM search space with DYNET* estimates is never less 
efficient than determining the DYNET* estimates for the entire network. When 
only one solution is required, in case of a medium to complex problem the 
investment of applying SRM is returned when searching. When multiple solutions 
are required, applying SRM is always more efficient than not applying SRM. When 
DYNET* is used in combination with SRM the running times can be as much as 
three times faster. Note that in our implementation of SRM, we do not cut off the 
dead-end branches in the search space. If these branches would be cut off, then the 
performance of SRM might be improved. 

Fig. 14.1. The Dutch railway service network 
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15. TRAINS, A Product 

In this chapter we look at the aspects concerning the practical use of the 
TRAINS system. There are two types of such use: first, the system is used as a tool at 
professional enquiry offices, and second, the system is used by customers (travellers) 
themselves. The system is commercially marketed for use by passengers in addition 
to the traditional (paper) time-tables. 

15.1. Travel information and TRAINS 

In this context, by travel information we mean the information about the 
product "travel by train", and the related aspects which a traveller needs to plan a trip 
by train (possibly including the return trip). Travel information is to be seen as an 
integral part of the product "travel by train"; it is one of the first steps in the travelling 
process. In the definition of travel information, as given by the NS marketing 
department, the following stages are distinguished (we describe the present 
situation): 

(1) Information at home: information about the planned train services and about 
fares. 

(2) Information on the way to the railway station: traffic signs indicating the way to 
the railway station. 

(3) Information at the station of departure: information about the planned train 
services, changes, delays and arrival and departure tracks. 

(4) Information on the train: information about the destination and possibly the 
route of the train. 

(5) Information at the station of arrival: street maps and information about 
connecting public transportation. 

The TRAINS system gives information about the planned train services, and can 
be used in stages (1), (3) and (4). In stage (1), passengers traditionally use paper 
time-tables or call a telephone enquiry office. In stage (3), passengers consult 
information boards or go to an enquiry office at the station. In stage (4), passengers 

Fig. 14.20. 
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consult the signs on the train or ask the conductor. The TRAINS system was first 
used at telephone enquiry offices, later also at enquiry offices at railway stations. 
Then the system was introduced for home and office use by passengers. In the future, 
the TRAINS system may also be consulted through Videotex terminals at home, the 
system may be used in information pillars at stations, and conductors may carry a 
hand terminal with the system. 

The need for travel information is common to all passengers. However, this 
need is greatest for passengers which travel relatively little (1 to 10 trips per year) 
and with varying destinations. The NS travel information policy (derived from the 
strategic and marketing policy, in which travel information plays an important role) 
is based on the needs of these passengers. If the needs of these passengers are met, 
then certainly, this will also be the case with the other types of passengers. The 
TRAINS system is especially suited for passengers who travel to many different 
destinations. For stage (1) the NS travel information policy has the following 

objectives: 

(1) Travel information should be as much as possible available 24 hours per day. 

(2) Travel information should be as much as possible individually oriented. 

(3) Travel information should be supplied at a low cost to the customer. 

The TRAINS system contributes significantly to the realization of these objectives. 
When used at an enquiry office or at home, the system will provide answers tailored 
to the specific wishes of a passenger. And of course, when used at home it is available 
24 hours per day. Furthermore the retail price of the TRAINS system (f 9,95 , about 

US $ 5.00) is very low. Because of the added functionality, the ease of use, and 
because the TRAINS system is used by personnel (at enquiry offices and throughout 
the NS organization) as well as by the passengers themselves, it has replaced the 
traditional paper time-tables as the center of the travel information policy, as 
defined by the NS marketing department. 

15.2. TRAINS as a tool at enquiry offices 

By the end of 1987, travel information by telephone was provided by 12 enquiry 
offices at railway stations, by 255 stations without separate enquiry offices, and by 2 
telephone enquiry offices (in The Hague and Hengelo). However, the total capacity 
had become much too low, and especially the telephone enquiry offices were very 
busy and difficult to get in touch with. Furthermore, at the railway stations without 
enquiry offices, information was given by unqualified personnel (not trained to give 
travel information). Due to these facts, the overall quality of travel information was 
poor and many customers were dissatisfied. In order to improve the quality it was 

decided to centralize travel information by telephone into three telephone enquiry 
offices (in Utrecht, The Hague and Hengelo) which give solely travel information 
(both planned train services and information on presently running trains). All 
personnel is trained specifically for giving travel information. In order to improve 
the quality of information, in the spring of 1988 TRAINS was introduced as a tool at 
these enquiry offices. The three offices have one single national telephone number 
(06 - 899 1121) and have 39 telephone lines. In total, 180 people work at the enquiry 
offices (mostly part-time), currently (September 1990) handling about 2.5 million 
calls per year. A call is not toll free; the customer pays f 0,40 per minute. 

15.2.1. Introducing TRAINS at enquiry offices 

The users of TRAINS at enquiry offices had no previous computer experience 
whatsoever. Therefore much effort was put into a careful introduction of the system. 
A project team was formed for the introduction. Members of this team were the two 
developers of the system (working for CVI, Centrum Voor Informatieverwerking, a 
subsidiary company of NS), a team manager from the NS exploitation department 
responsible for travel information, a representative from the NS exploitation 
department responsible for the information systems containing the time-tables, a 
representative from the NS marketing department responsible for travel 
information, a professional NS instructor, and the heads of the three enquiry offices. 

The program was made as much user-friendly as possible. For instance, since 
most new users could hardly type, a powerful name recognition algorithm was 
designed to handle misspellings of station names. Since both experienced personnel 
from previous enquiry offices and new personnel would be working with the system, 
it had to be made sure that the user interface accommodated both types of users. For 
instance, a station can be entered by its official abbreviated name, but also by its full 
name (possibly incomplete or misspelled). The interface was designed in such a way 
that users can quickly perform the most frequent queries: 

(1) What is the best way to travel from one station to another, departing at or after, 
or arriving at or before some specific time? 

(2) What is the appropriate fare? 
(3) What are the possibilities for the return trip? 
(4) What is an earlier or later train? 
(5) What is the earliest or latest possibility? 

TRAINS' active component (discussed in chapter 13) makes sure that alternate trip 
possibilities are found, thereby providing the caller with all relevant information. 
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Of course, introducing a computer at a site where previously all work was done 
manually, creates some fear. First, people may fear that their job may become 
redundant. Second, people may fear that they will not be able to master this new 
technology and will lose their job. When we started the introduction of TRAINS, we 
emphasized that the system was a new, easy to use tool to make jobs more pleasant. 
The users would not have to tediously search the paper time-tables anymore (which 
were notoriously worn out after a few weeks of service), and have more time to help 
the client on the telephone, while reducing the time the client would have to wait. 
We were careful not to say that the system would be better than they were, just faster. 

When the introduction was started, the system was not transferred to the 
enquiry offices. Instead, we left the system in a room at the company headquarters in 
Utrecht. We asked the heads of the three enquiry offices to come to Utrecht about 4 
hours per week to help us develop the system further. With the help of a professional 
instructor (who was experienced in teaching personnel at enquiry offices and at 
ticket counters) they learned to operate the system. Although these people would 
never operate the system in practice, this approach had a number of advantages: 

(1) The fact that the heads of the enquiry offices were the first to work with the 
system (at the company headquarters!) confirmed their status at the enquiry 
office. The introduction of the system further confirmed their status. 

(2) At the company headquarters, away from their personnel, the heads of the 
enquiry offices were much less inhibited than they would have been at their 
enquiry offices. They were allowed to make mistakes without becoming 
embarrassed and without their personnel knowing it. By the time the system was 
transferred to the enquiry offices, the heads were experienced with the new 
system, and could reassure and help their personnel themselves. Since the heads 
of the enquiry offices were experienced with the system before their personnel 
was, again their status was confirmed instead of endangered by this new 
technology. They were actively involved in the introduction. 

(3) After initial training, the subsequent, additional on the job training of personnel, 
could be left to the heads of the enquiry offices. 

(4) The heads of the enquiry offices were all very experienced and had spent several 
years giving travel information themselves. Their comments greatly helped to 
improve the system and especially the user interface (the design and lay-out of 
the screens, the use of keys, and the refinement of the user model). 

During these sessions, there was much direct contact between the developers of the 
system and the heads of the enquiry offices. Even the smallest comments were 
discussed with the project team, and the effects would almost always be visible at the 
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next session. Quickly seeing the effects of their comments, the heads of the enquiry 
offices gained much confidence in the system and its developers. The system was 
made for them and with them. Towards the end of their introduction to TRAINS, 
they regarded the system as their system as well. The disadvantage of this approach 
was that the user management was only distantly in touch with the development. 
They did hear about the system, the comments and alterations, but always much 
later. Still, we feel that if the communication had been through the conventional 
management channels, too many comments would have been at least much delayed, 
possibly coloured or even filtered out! We feel that the active involvement of the 
heads of the enquiry offices and the direct contact between the users at the enquiry 
offices and the developers of the system have been critical success factors during the 
introduction. 

It must be emphasized that much of the system has been adapted during the 
introduction and the first year of professional use. Although the underlying (search) 
algorithms have remained largely the same, practically every other aspect of the 
system has been revised in a prototyping manner: the users were given a prototype 
system they could try out, the prototype was adapted to remarks and wishes, then the 
users tried out the new prototype, and so on. Especially since the users of TRAINS 
had very little or no experience with information systems, they could not be expected 
to articulate their requirements completely and clearly. The prototyping method 
proved to be an excellent way to determine these requirements. For a discussion of 
the prototyping method see [Je, 1983] and [Da, 1984]. 

15.2.2. The effects of professional use of TRAINS 

After the system was introduced at the enquiry offices and the users there 
acquired experience with the system, a number of effects became clear. We shall 
look at a number of them. 

15.2.2.1. Speed 

The system performs much faster than human beings. Queries are answered in 
15 to 30 seconds (when the system runs on Atari ST computers). It is estimated that 
by using the system, questions about trip possibilities and fares are handled in 50 to 
70 percent of the time taken before the introduction of TRAINS. Note that the 
duration of the complete call is measured. With the TRAINS system, most of the call 
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consists of dialogue, the silence while the operator is searching has almost 
	

form of inconsistency. By now, the detours generated by TRAINS are automatically 
completely disappeared. Furthermore, it seems that with the TRAINS system, the 

	
accepted as reasonable. We can say that TRAINS embodies this regulation! 

operators tend to give more information'. 	
15.2.2.5. Awareness 

15.2.2.2. Quality 

In non trivial cases, the system often gives better answers than human beings. 
The system is unprejudiced and will find the optimal route, no matter how hard it 
would be to find the route in the paper time-tables, or how unusual the route may 
seem. We found that people tend to prefer certain routes for specific queries. It 
turned out that many people working at enquiry offices used 'old' knowledge. The 
routes they preferred used to be optimal some time ago. However, they did not 
update their knowledge very well, every time the time-tables were changed. As a 
result, they would give suboptimal solutions. 

15.2.2.3. Consistency 

Since the TRAINS system is used throughout the organization and at all enquiry 
offices, customers will get the same advice everywhere. Previously however, the 
advice would have depended on the knowledge of the person asked. For instance, 
the people working at the enquiry office in The Hague have a good knowledge of the 
possibilities locally, but less so of the possibilities around, say, Hengelo. The people 
working at the enquiry office in Hengelo would advise to travel from Hengelo to 
Maastricht via Utrecht (a considerably longer than usual, but equally fast route 
which is more comfortable, see chapter 13). The people at the enquiry office in The 
Hague, however, would not have considered that route. 

15.2.2.4. Regulations 

It became clear that some NS regulations needed to be more precise. For 
instance, one regulation states that a detour is allowed if it makes a journey quicker 
or more comfortable. The rule does not give a limit to the detour. Previously, many 
detours giving better journeys were too hard to find in the time-tables and not many 
people knew about them (and obviously did not use them). But the TRAINS system 
will always find a quicker journey, no matter how unusual the route may be or how 
difficult it may be to find it in the time-tables. It was then decided to let the 
personnel decide whether the detour was reasonable or not, which introduced a new 

1 Mrs. J. Weggemans, head of the enquiry office in Utrecht at the time of the introduction (personal communication). 

Apart from the data of the planned train services, the TRAINS system needs 
detailed information about which possible connections are feasible and which are 
not. Since the system requires information about all possible connections, not just 
the most important connections (as indicated in the paper time-tables), this placed a 
higher demand on the information from the time-table planning department. With 
the TRAINS system they can actually see how their planning works out in practice; 
TRAINS enables them to tune the time-tables for better connections more easily. In 
general, the use of the system throughout the NS organization has led to a higher 
awareness of the quality of the time-tables, which is a major part of the quality of the 
entire product "travel by train". 

15.3. TRAINS as a commercial product 

In the summer of 1989, after the TRAINS system had been used successfully at 
enquiry offices for one year, it was decided that the system could be released to the 
general public in May 1990. 

15.3.1. Releasing TRAINS 

Releasing a product like TRAINS does have some risks: 

(1) If the system would malfunction or would not satisfy the customers, then that 
would damage the image of NS and give the organization a bad reputation not 
easily forgotten. 

(2) The system could be misused, for instance by the press to generate negative 
publicity for NS. 

Therefore, in order to try out the reaction from the public and the press, it was 
decided to have a prerelease during the fall of 1989. Before that, the system was first 
tested at some external sites, for example at the ANWB (the largest Dutch 
automobile club) and the Ministry of Transport. When the reactions turned out to be 
positive, in October 1989, the system (now called "NS Reisplanner"; the NS Travel 
Planner) was prereleased in limited numbers as a promotional gift of CVI (Centrum 
Voor Informatieverwerking, the software company of NS), where the system had 
been developed and which was celebrating its 25th  anniversary. In this way, an 
unsuccessful prerelease would have had only a minor effect on the image of NS. Of 
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course, it would have been damaging for the image of CVI, but people would have 
been more forgiving since the system was a promotional gift. Furthermore, the 
image of a mid-size software company such as CVI is less sensitive than the image of 
a national railway company such as NS. 

Fortunately, the prerelease was successful and due to the limited edition, within 
a few weeks the system turned into what was called the most frequently copied 
program of the country. During this period of unofficial use, many people 
encouraged NS to release TRAINS as an official product and useful suggestions 
were made on how the system could be improved. 

We shall now look at the aspects concerning the release of the TRAINS system 

as an official NS product. 

15.3.1.1. The product 

The primary objective of the product is to distribute the planned NS train 
services. A secondary objective has been to enhance the NS image as a modern 
company. The product is aimed at the following categories of users: 

(1) Individual travellers. 
(2) Companies, business travellers. 
(3) Public information suppliers such as libraries and tourist information offices. 

Since the same system would be used by customers as well as professional users (NS 
employees), it had to be easy to use for both types of users. In case of a compromise, 
it was decided that the emphasis should always be on the customer. Therefore, for 
instance no jargon was allowed in the program. Since the user interface was designed 
already to accommodate unexperienced NS users, only minor changes were 
necessary. The use of (the official) abbreviated station names was made optional (by 
default not available). Since the train numbers are only useful for (NS) internal 
reference, they too were made optional (by default not shown). Furthermore, 
additional information about the tariff distances of the routes the system finds (and 
which are used to calculate fares) were made optional (not shown by default). By 
making optional these features, which are primarily aimed at professional use, and 
by supplying a user profile facility, both types of users are accommodated. The 
functionality of the system was not changed; all information available to professional 
users are available to the customers. The system was made available for MS DOS 

and Atari ST computers. 

153.1.2. Price 

It was decided to give the system a retail price which was as low as possible 
(without making a loss) for two reasons. First, the NS travel information policy is to 
supply information at a low cost to the customer. Second, selling information is not 
viewed as an NS activity. Giving travel information is seen as a service aspect and as 
an integral part of the NS product "travel by train". Because the system offers more 
service than the conventional time-tables (retail price f 6,50), it should be priced 
accordingly. Since the system was originally written for professional use, the 
development costs were not taken into account, and only the costs of production, 
distribution and promotion (the "out of pocket" costs) needed to be covered. This 
way, a retail price off 9,95 was calculated. 

153.13. Packaging 

An attractive cassette was designed to contain a floppy disk (both the 3.5 and 
5.25 inch formats can fit in the cassette), a manual and a railway map. The lay-out 
and colours (of the cassette, the manual and even the floppy disks themselves) were 
chosen to fit the NS corporate style. The objective was to make the package 
immediately recognizable as an NS product. A link to the paper time-tables was 
made by using the cover art of the (paper) time-tables for the cassette of the floppy 
disk. 

153.1.4. Promotion and distribution 

The distribution of the product was kept limited for three reasons: 

(1) NS had no previous experience with selling software. 
(2) The potential of the product was unclear since commercial software of such a low 

cost was unprecedented. 
(3) Since three versions of the system were available (on 3.5 inch and 5.25 inch 

floppy disks for MS DOS computers, and on 3.5 inch floppy disks for Atari ST 
computers) an extensive distribution would be complicated and costly. 

It was decided to mainly distribute the system by mail order and to sell it in special 
NS shops ("Spoorwinkel") at the railway stations of Amsterdam CS, Utrecht CS and 
The Hague CS, and at a mobile promotion stand. Distribution by a third party was 
not chosen since that would have given too little control over the distribution and 
would have added too much to the price. 
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Due to a limited budget the promotion was kept modest. It was made part of the 
"monthly marketing theme". The marketing theme of May 1990 was the new train 
services and the release of the system was part of that. In a brochure about the new 
train services, the system as well as the new time-tables were announced and an 
order form for the system was enclosed. These brochures were available at all ticket 
counters. Furthermore, the system was mentioned in the new time-tables and in a 
brochure for regular customers (again including an order form). There was no 
separate promotion campaign. Review copies of the system were sent to computer 
magazines. In November 1990, the TRAINS system was featured in an NS 
"corporate brochure", which described 8 important NS projects for the nineties, and 
which was aimed at enhancing the NS image as a modern company. This brochure 
was backed by a poster campaign at railway stations. 

153.1.5. Personnel 

The general NS personnel was made aware of the new product by a small 
announcement in an article about the new train services in the newsletter sent to all 
NS personnel. An extra announcement was made in the special news bulletin for 
retail personnel, explaining the distribution matters and the specific (customer) 
brochure with order form. 

15.3.2. Sales and effects 

The system went on sale as an official NS product on May 5, 1990. Although the 
system seems to be copied extensively (again!), the sales have been higher than 
expected: 35 000 copies over the first 6 months! The main reasons are probably the 
low price and the attractive packaging. At the end of 1990, we estimate that there are 
about 100 000 copies of the system in use. Apparently the system performs very 
satisfactorily. We have received many compliments and only very few complaints 
were made, and almost all of them about faulty disks. The only criticism has been 
about the limited distribution. The most frequent suggestions have been about 
adding platform information and a digital map. 

The first effect of the sale of the system that could be seen, has been a decrease 
in calls to telephone enquiry offices. In an early internal NS study (August 1990) it 
has been calculated that statistically, each floppy disk sold gives a mean decrease of 
6 telephone calls per year. There has been no clear effect on the sale of paper 
time-tables. Many customers bought both the program and the paper time-tables. 

An important result of the high sales figures is that unscheduled updates of the 
system, to deal with changes in the time-tables in the course of the year, would be  

costly and complicated. Normally, the system is valid one year, and each year a new 
release with the new time-tables is sold again. An update for systems sold the 
previous year is not offered. Due to the low cost of the software, this is considered 
acceptable by the customers. Multiple releases per year would probably not be 
considered acceptable, however. If the time-tables would be changed considerably 
in the meantime, an update of all systems sold would be costly. If an unscheduled 
important change of time-tables is considered, this will have to be taken into 
account. 

15.3.3. Alternate use 

Apart from being used to plan a trip by train, TRAINS is also used for other 
purposes. In Amsterdam, the system is being used in a labour council project to 
introduce long term unemployed people to computers and to take away fear of 
computers (apparently, the user interface design meets the objectives that were set). 
At the university of Leiden, the system is used in a first session of an introductory 
course "Law and Informatics" for law students. In 1991, the system will also be used 
in information science lessons at secondary schools throughout the country. Many 
companies use the fares information of the system to check trip expense accounts. 
Personnel departments use the system to advise employees and applicants on how to 
travel to the company site. 

15.4. The future 

In the future, the system will remain in use at enquiry offices and each year a 
new version with the new train services will be released to the public. Over the next 
years, new features will be added to increase the service and to keep the interest of 
the public (for instance digital maps and platform information). Apart from versions 
giving information about NS (national) train services, there may also be versions 
giving information about (some) international train services. 

NS is currently developing new retail systems which will be used at ticket 
counters (making the different types of tickets and handling the cash register 
functions). The TRAINS system will also be included in these new systems in order 
to provide customer information. The system may also be used in information pillars 
and ticket machines. The system is currently used in an experimental Videotex 
application. We will be investigating the possible use of TRAINS in the planning 
process of new train services. 

Transport by train, however, is only part of the total public transportation system 
and it has become clear that a system giving information about all forms of public 
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transportation is a necessity. Such a system is now under development (see chapter 

16). 

Finally, we are currently also developing versions of TRAINS for foreign 
railway companies and versions including airline information. A prototype version 
of TRAINS including both railway and airline services was recently shown to airline 

companies. 

 

16. Further Developments 

 

In this chapter we shall first look at some recent further developments of the 
TRAINS system, and then discuss some future work. This chapter is largely similar 
to [Tu, 1990]. 

We recently adapted the TRAINS system to include not only train services, but 
also other forms of public transportation. Our first step was to introduce regional 
buses. The next step was to include intra-city transportation, such as buses, trams and 
subways. Currently, we are building a system which will include the entire Dutch 
public transportation system. This information system will be fully operational in 
1992. 

16.1. Representing other forms of public transportation 

In order to ensure high quality information, we had to extend our representation 
of transportation services. The concept of time-tables is common to all forms of 
public transportation. The frequency and the punctuality differ, however. The 
frequency does not affect the quality of time-table information, but the punctuality 
does. If the punctuality is low, time-table information is not of much use. Trains, 
subways and regional buses are both fairly punctual. Intra-city transportation like 
tramways and buses, has a relatively low punctuality because one heavily used 
infrastructure is shared with other city traffic. In practice, the time-tables are used as 
a reference only. In order to give useful information, we dropped the discrete 
departure times and travel times for these types of transportation, and replaced 
them by an estimated waiting time (at the stop) and an estimated travel time. These 
times are chosen conservatively and may depend on the time of day (the delays may 
be greater during rush hours). In this way, the system will give a realistic advice. 

16.2. Discontinuities in public transportation services 

As described in chapter 13, the active component of the TRAINS system 
searches for discontinuities (resulting in alternate journeys) by trying different times 
of departure and arrival. However, not only changes in the desired time of departure 
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or arrival may cause discontinuities: the choice of station may also have effects. For 
instance, at the (railway) station Amsterdam Lelylaan all (fast) intercity train 
services stop, while at the station Amsterdam De Vlugtlaan (about 2 km from 
Lelylaan) only the (slow) stopping trains stop. It may be more efficient to take more 
time to go to the Lelylaan station instead of the station De Vlugtlaan, and then take 
advantage of the intercity services. 

Usually, situations in which the choice of station is relevant are rare in a national 
railway network. But when we consider intra-city transportation services, these 
situations are very common. Many bus and tram stops are within walking distance 
from each other (providing connections), or multiple stops are at a more or less 
equal distance from a destination. Favouring a certain stop over another one may 
have different reasons: 

(1) A stop may be serviced by faster links. 
(2) A stop may be more frequently serviced. 
(3) A stop may be serviced by a link which provides quicker connections. 
(4) A stop may be serviced by a link providing a more direct connection. 

In the first three cases the travel time of a complete journey (which may consist of 
multiple stages and different modes of transport) will decrease. The last case may 
provide a more convenient journey. 

16.2.1. The human solution: maps 

Humans deal with stops which are near to each other by using maps. They look 
for stops in the neighbourhood of a certain stop and assess the advantages of the 
different possibilities. If the destination of a trip does not have a stop in the 
immediate proximity, then this situation is handled similarly: on the map the 
different stops in the neighbourhood are assessed. Humans, however, seldomly have 
complete and unbiased knowledge of the different possibilities and therefore the 
solution which is found is often suboptimal. This is particularly the case if local 
knowledge is lacking or limited. For instance, for a trip to Amsterdam, many people 
choose Amsterdam Central Station because they think that the biggest station will 
provide the best connections. However, Amsterdam has 7 more stations, some of 
which might be much better suited considering the time-tables or the geographical 
location of the exact goal of the trip (within Amsterdam). 

16.2.2. The computer solution: digital maps 

In order to extend the active behaviour of our system we use the same approach 
as the human solution in combination with complete knowledge. We use digitized 
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map information. Of each stop in the network the exact geographical position is 
known. 

16.2.2.1. Estimating walking distances 

By using the coordinates of the stops and simple two-dimensional geometry, the 
distance between two stops can be estimated. For the computation of this estimate 
we use the Manhattan distance: all stops are assumed to lie on a grid of straight roads 
with 90° angled corners, much like a street map of Manhattan Island (New York 
City). By using an estimate of the walking speed (in km/h), we can estimate the time 
to walk the distance. 

16.2.2.2. Choosing the stops 

When the user of the system enters the name of a stop (either the place of 
departure or arrival), the system will search in the neighbourhood of this stop for 
possible alternate stops. All stops within a walking distance of 10 minutes are 
considered. This selection is suggested to the user who may remove stops from this 
selection or add extra stops. Then all stops in the selection are considered in the 
search for possible journeys. Each stop is given a penalty equal to the walking 
distance. If there are 6 possible departure stops and 5 possible arrival stops, then all 
30 possible journeys are evaluated. The best solutions in terms of travel time and 
number of changes (train changes, bus changes etc), taking into account the walking 
distances, are selected and suggested to the user. 

16.2.2.3. Special objects 

Sometimes, a user has very limited local knowledge. She only knows the address 
of where she would like to go, or not even that: she would like to go to a specific 
museum of which she does not know the exact address. For these cases we have 
introduced special objects. A special object can be a district name, a street name, a 
postal code, the name of a shopping center, a museum, a hospital, etc. The exact 
geographical position is known for each special object. When a special object, such 
as a postal code, does not have a single position, then the geographical position of its 
center is used. Long streets may be subdivided into different parts (which are 
distinguished by house numbers). By using the same approach as for determining 
alternate stops, stops in the neighbourhood of a special object are determined. 
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16.2.2.4. Obstacles 

Although two stops may be very close geographically, it may not be possible to 
walk from one stop to the other. For example, they may be separated by a canal or a 
river. For these situation we have introduced obstacles. The position and the length 
are known for each obstacle. By using two-dimensional geometry it can be computed 
how much time it would take to walk past the obstacle. 

16.2.2.5. The advantage of using geographical information 

The paramount advantage of using the coordinates of the geographical location 
of a stop or an object, is that this approach combines a high degree of flexibility and 
maintainability. Stops or objects can be added or removed very easily, no extra 
information about other stops or special objects nearby is needed. For input, no 
relation between stops and objects near the new stop need to be given. The system 
will objectively decide which stops are near, without bias and with complete 
information. 

16.3. Combining time-tables and geographical information 

By using complete information of both time-tables and geographical locations 
of stops, the system is capable of giving high quality information: the best 
possibilities considering time and space are found. Alternatives are not only found 
by trying different times, but also by trying different stops which are near the origin 
or destination. With complete knowledge and without bias the best suited journey is 
found. 

16.4. Using TRAINS in the time-table planning process 

In the future we shall be investigating the possible use of the TRAINS system in 
the time-table planning process. An important step in the time-table planning 
process is the evaluation of a proposed time-table. By supplying a test set of trips 
(origin and destination pairs), the TRAINS system can be used on the new 
time-table to compute the resulting travel times. By weighing the different origin 
and destination pairs, and by comparing the resulting travel times to the optimal 
travel times (which are direct connections without stops), an indication of the quality 
of the time-table can be obtained. Furthermore, by using information about the 
numbers of travellers, an indication of the load of the different lines can be obtained. 
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Summary 

Searching time-table networks 

In this thesis we describe an application of AI search techniques to an important 
class of problems that arise in transportation system analysis. Specifically, this thesis 
deals with path search problems in space-time networks, a problem commonly 
arising in connection with scheduled service modes. An important example of a 
scheduled service mode is a railway transportation service. Apart from a search 
procedure, we also present a novel representation of the problem domain, and a 
practical application of the techniques described. 

Rather than to adapt a conventional graph representation in order to represent 
a time-table network, we introduce discrete and discrete dynamic networks for this 
purpose. In a discrete network there are only finite, discrete, predetermined 
possibilities for moving from one vertex to another. If we consider a railway service 
network as an example of a time-table network, in a discrete network the stations are 
represented by vertices, and each train is represented by one connection between 
vertices. Instead of representing the discrete nature of the scheduled connections 
(the departure times of the trains) by a function giving the (varying) travel time and 
wait time of a connection, the connections themselves are made discrete. Each 
connection representing a train has a discrete start value and end value, representing 
the time of departure and time of arrival respectively. In a discrete dynamic network, 
in addition, visiting a vertex has a cost (possibly zero), which may depend on both the 
past and the future route of the path through the vertex. The visiting cost represents 
the required connectional margin which depends on both the arriving train and the 
departing train. Furthermore we introduce dynamic networks, which lack the 
discreteness of connections, but in which visiting a vertex has a cost. 

In discrete and discrete dynamic networks, due to the discrete nature of the 
connections, the definition of an optimal path must be adapted: not only has the 
optimal path the smallest end value (earliest possible arrival time), but also the 
greatest possible start value, given this end value (the latest possible departure, 
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given the time of arrival). In order to find such an optimal path, with Dijkstra's 
algorithm in mind, we have developed a two-pass algorithm for searching a discrete 
network. Due to the varying visiting costs in a discrete dynamic network and a 
dynamic network, the Markov independence of optimal solutions is no longer true. 
This means that an optimal solution for the total problem cannot be constructed by 
combining optimal solutions of the subproblems. "Divide and Conquer" fails. In a 
railway service network, the optimal route from A to C via B may not be a 

combination of the optimal route from A to B and the optimal route from B to C, 
since there may be no connection. Therefore none of the traditional shortest path 
algorithms could be used. We have adapted the two-pass algorithm for searching a 
discrete network to handle discrete dynamic and dynamic networks: we define which 
solutions to the subproblems are required to be able to construct an optimal solution 
for the total problem. 

In order to increase search efficiency we have developed the Space Reduction 
Method. In SRM first solutions in a simpler search space, called the abstraction 
space, are considered in order to cut parts of the entire search space. In a railway 
service network, the abstraction space consists of a network in which all trains 
between two stations are replaced by one connection with an estimated travel time. 
By searching this abstract network it is determined which part of the time-table 
network is likely to contain the optimal solution. SRM reduces the search space 
without losing optimal solutions. Once a solution has been found SRM checks 
whether a better solution might exist outside the reduced search space. We show 
how SRM can be applied to searching a discrete dynamic network. 

Heuristics can be used to further improve the efficiency of search algorithms. 
We describe how the results from SRM can be used in an A* type of extension to the 
algorithm for searching discrete dynamic networks, by preferring vertices which are 
estimated to be closest to the goal during search. SRM gives for every vertex 
(station) a consistent underestimate of the distance (travel time) remaining to the 
goal vertex (station of arrival). In the search process, this estimate is used to select 
the vertices which are estimated to be closest to the goal. 

An excellent way to decrease the amount of search necessary to find a solution, 
is to make sure that the network that is being searched is as small as possible. Some 
vertices can be removed from the network when they are neither the source, nor the 
goal vertex. In a railway service network, if it is useless to change trains at a station 
and if this station is neither the station of departure nor the station of arrival, then 
we do not need to consider this station when searching. We show how the algorithm 
for searching discrete dynamic networks can be adapted to deal with these 'hidden' 
vertices. 

When a system is being used to advise travellers about their trip by train, giving 
only the quickest route is not sufficient. In any practical application travellers also 
want to know about routes with as few train changes as possible. We describe how 
the quickest route can be optimized for train changes, and how some longer 
(suboptimal) routes with fewer train changes can be found by using a time penalty 
for train changes. By penalizing routes with train changes during search, routes 
without, or with fewer train changes can be found. 

Although the optimal or quickest solution is thoroughly defined, it is far less 
clear what is the best answer to a user's question. In practice, it turns out that users 
usually overspecify their question and that this question is seldomly definite. There 
are many factors which determine the 'best' answer, and most users cannot even 
make all of these factors explicit. Of a trip by train it is known that the number of 
train changes is important, but there may be additional factors contributing to the 
best answer. Furthermore, these factors may differ from case to case. Therefore, it is 
not possible to define the best answer in terms of goals and constraints. For example, 
in order to find the best answer we cannot just have chosen to use such techniques as 
multiple-objective shortest path techniques, or techniques to find suboptimal paths 
for each objective. Instead, we search for a number of optimal solutions, and 
suboptimal solutions with fewer train changes, and use a general "common sense" 
user model to select all relevant solutions for a user. The user decides which solution 
is best for her. 

The algorithm for searching discrete dynamic networks and the techniques 
described previously have been implemented in a working system (TRAINS) which 
searches the entire Dutch railway service network. We describe how TRAINS was 
introduced as a tool at information centers of the Dutch railway company NS 
(Nederlandse Spoorwegen). Subsequently, TRAINS was adapted for public use and 
released, first as a promotional gift, then as an official NS product (NS Reisplanner). 
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Samenvatting 

Het doorzoeken van dienstregelingsnetwerken 

In dit proefschrift behandelen we een toepassing van AI-zoektechnieken op een 
belangrijke klasse van problemen bij de analyse van transportsystemen. In het 
bijzonder behandelt dit proefschrift kortste-pad problemen in tijd-ruimte 
netwerken. Dit soort problemen doet zich in het algemeen voor bij transport op 
basis van een dienstregeling. Een belangrijk voorbeeld daarvan is een 
treindienstregeling. Behalve een zoekprocedure, introduceren we ook een nieuwe 
representatie van het probleemgebied, en een praktische toepassing van de 
beschreven technieken. 

In plaats van een conventionele graafrepresentatie aan te passen om een 
dienstregelingsnetwerk te representeren, introduceren we discrete en discrete 
dynamische netwerken. In een discreet netwerk is er een eindig aantal discrete, 
vastgestelde mogelijkheden om van een punt naar een ander te gaan. In plaats van 
de discrete aard van de dienstregelingsverbindingen te representeren door een 
functie die de (variërende) reistijd en wachttijd van de verbinding geeft, maken we 
de verbindingen zelf discreet. Elke verbinding heeft een discrete begin- en 
eindwaarde, die respectievelijk de vertrek- en aankomsttijd representeren. In een 
discreet dynamisch netwerk zijn er bovendien kosten verbonden aan het bezoeken 
van een punt (mogelijk 0 kosten), die kunnen afhangen van zowel de reeds gevolgde 
als de toekomstige route van het pad via dit punt. Deze bezoekkosten representeren 
de benodigde overstaptijd. Verder introduceren we dynamische netwerken, waarin de 
verbindingen niet discreet zijn, maar waarin het bezoeken van een punt kosten geeft. 

In discrete en discrete dynamische netwerken moeten we door de discrete aard 
van de verbindingen de definitie van een optimaal pad aanpassen: een optimaal pad 
heeft niet alleen een zo laag mogelijke eindwaarde (lees: een zo vroeg mogelijke 
aankomst), maar ook een zo groot mogelijke beginwaarde, gegeven deze 
eindwaarde (lees: een zo laat mogelijk vertrek, gegeven de aankomsttijd). Om een 
dergelijk optimaal pad te vinden hebben we, met Dijkstra's algorithme in gedachten, 
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een uit twee slagen bestaand algorithme ontwikkeld om discrete netwerken te 
doorzoeken. Vanwege de variërende bezoekkosten in een discreet dynamisch en een 
dynamisch netwerk is de Markov onafhankelijkheid van de optimale oplossing niet 
langer van kracht. Dit betekent dat een optimale oplossing van het totale probleem 
niet geconstrueerd kan worden uit een samenstelling van de optimale oplossingen 
van de deelproblemen. "Verdeel en heers" gaat niet op. Met andere woorden: in een 
treindienstregeling hoeft de optimale route van A naar C via B geen samenstelling 
te zijn van de optimale route van A naar B en de optimale route van B naar C, omdat 
er mogelijk geen aansluiting bestaat. Hierdoor kan geen van de traditionele 
kortste-pad algorithmen gebruikt worden. We hebben het algorithme voor het 
doorzoeken van discrete netwerken aangepast voor discrete dynamische en 
dynamische netwerken: we definiëren welke oplossingen van de deelproblemen 
vereist zijn om de optimale oplossing van het totale probleem te kunnen 

samenstellen. 

Om de zoekefficiëntie te verhogen hebben we de Space Reduction Method 
(Ruimte Reductie Methode) ontwikkeld. In SRM worden eerst oplossingen 
beschouwd in een eenvoudigere zoekruimte, de abstractieruimte geheten, om delen 
uit de volledige zoekruimte te kunnen snijden. In een treindienstregeling bestaat de 
abstractieruimte uit een netwerk waarin alle treinen tussen twee stations zijn 

vervangen door een verbinding met een geschatte reistijd. Door dit abstracte 
netwerk te doorzoeken wordt bepaald welk deel van het dienstregelingsnetwerk 
waarschijnlijk de optimale oplossing bevat. SRM reduceert de zoekruimte zonder de 
optimale oplossing te verliezen. Zodra een oplossing is gevonden, controleert SRM 
namelijk of er misschien een betere oplossing buiten de zoekruimte zou kunnen 
bestaan. We laten zien hoe SRM toegepast kan worden op het doorzoeken van een 
discreet dynamisch netwerk. 

Heuristieken kunnen worden gebruikt om de efficiëntie van zoekalgorithmen 
verder te verbeteren. We beschrijven hoe de resultaten van SRM gebruikt kunnen 
worden in een A* achtige uitbreiding van het algorithme om discrete dynamische 
netwerken te doorzoeken, door tijdens het zoeken de voorkeur te geven aan die 
punten die vermoedelijk dichter bij het doel liggen. SRM geeft voor ieder punt 
(station) in de zoekruimte een consistente onderschatting van de afstand (reistijd) 
die nog resteert naar het doel (aankomststation). Tijdens het zoekproces wordt deze 
schatting gebruikt om die punten te selecteren die vermoedelijk het dichtst bij het 

doel liggen. 

Een uitstekende manier om het zoeken naar een optimale oplossing te 
beperken is er voor te zorgen dat het te doorzoeken netwerk zo klein mogelijk is. 
Sommige punten kunnen uit het netwerk verwijderd worden als ze noch vertrekpunt 
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noch doel zijn. Bij een treindienstregeling geldt: als het geen zin heeft om over te 
stappen op een station, en als het bovendien niet om eenvertrek- of aankomststation 
gaat, dan kunnen we dit station bij het zoeken buiten beschouwing laten. We laten 
zien hoe het algorithme voor het doorzoeken van discrete dynamische netwerken 
kan worden aangepast om met deze 'verborgen' punten om te gaan. 

Indien een systeem wordt gebruikt om reizigers te adviseren over hun treinreis, 
dan is het niet voldoende alleen de snelste routes te geven. In de praktijk willen 
reizigers ook informatie over routes met zo min mogelijk overstappen. We 
beschrijven hoe de snelste route geoptimaliseerd kan worden naar het aantal 
overstappen, en hoe sommige (suboptimale) routes met minder overstappen 
kunnen worden gevonden door een tijdsboete voor overstappen te gebruiken. Door 
routes met overstappen tijdens het zoeken te beboeten, kunnen routes zonder of 
met minder overstappen worden gevonden. 

Ofschoon de optimale of de snelste oplossing goed is gedefinieerd, is het veel 
minder duidelijk wat het beste antwoord op een vraag van een bepaalde gebruiker is. 
In de praktijk blijkt dat veel gebruikers hun vraag normaliter overspecificeren en dat 
deze vraag zelden volkomen vast ligt. Er zijn veel factoren die het 'beste' antwoord 
bepalen, en de meeste gebruikers kunnen deze factoren niet eens alle expliciet 
maken. Van treinreizen is het bekend dat het aantal keren overstappen belangrijk is, 
maar er kunnen meer factoren bijdragen tot het beste antwoord. Verder kunnen 
deze factoren van geval tot geval verschillen. Daarom is het niet mogelijk om het 
beste antwoord te definiëren in termen van doelen en eisen. Voor ons onbruikbaar 
zijn daardoor technieken die met meerdere doelen naar het kortste pad zoeken of 
die voor elk doel een suboptimaal pad vinden. In plaats daarvan zoeken we naar een 
aantal optimale oplossingen en suboptimale oplossingen met minder overstappen, 
en gebruiken een algemeen "gezond verstand" gebruikersmodel om al die 
oplossingen te selecteren die relevant zijn voor een gebruiker. De gebruiker zelf 
beslist welke oplossing het beste is. 

Het algorithme voor het doorzoeken van discrete dynamische netwerken en de 
zojuist beschreven technieken zijn geimplementeerd in een werkend systeem 
(TRAINS), dat de volledige Nederlandse treindienstregeling doorzoekt. We 
beschrijven hoe TRAINS werd geintroduceerd als een hulpmiddel op telefonische 
informatiecentra van de Nederlandse Spoorwegen (NS). Daarna werd TRAINS 
aangepast voor algemeen gebruik en uitgebracht, eerst als relatiegeschenk, daarna 
als een officieel NS produkt (NS Reisplanner). 
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