
An alternative approach to OpenStreetMap

Stefan de Konink
stefan@konink.de

January 6, 2009

1 Abstract

We explore the performance implications of

running OpenStreetMap on executable system

code with the MonetDB5 database as database

storage. Our preliminary results show the per-

formance increase over typical interpreted lan-

guage for processing are significant, query time

for specific feature selection declined. The

amount of dependencies for running a personal

server were reduced.

2 Introduction

OpenStreetMap is a geographical database

based on co-creation and the import of geo-

graphical data available in the public domain.

The project in its current form (December 2008)

is good for 6GB of compressed XML data, called

the ‘planet’, this expands to 72GB of raw CSV

data consisting of nodes, ways and relations.

This topological form allows relations to have

all the previous as members. Ways can take

nodes as members. A node is a point on WGS84

projection separated in longitude and latitude.

Each of the objects allow to be enhanced with

tags, consisting of key- and value-pairs. With

some trivial overhead for changes and users.

Within the community there are several chal-

lenges, the format is free, and so diverse are

its implementations. Currently two implemen-

tations are broadly known, the actual ‘server’

MySQL implementation where the proprietary

API runs from using the de facto schema, and a

‘Mapnik’ PostGIS implementation that runs on

a table that exploits binary columns as storage

for used tags in a rendering task.

We will add a new solution that is currently

known as handler_osm. An implementation

of a readable and writable OSM server imple-

mented as a native extension to the Chero-

kee Webserver and using a connection pooled

MAPI interface to MonetDB5. Schemawise we

have improved the design in favour of normal-

isation and propose to drop ‘ways’ in favour of

a more general ‘relation’, appropriately tagged.

For compatibility reasons, the way sequence

collides with the relation sequence, thus we test

our work with this extra table.

While the current server implementation is

able to keep track of the users changes, the

lack of foreign key constraints and transactions

makes its output under many circumstances in-

consistent, the OSM community tries to over-

come this with a more recent API version 0.6.

Our comparison will implement and explore

what known is as the ‘current’ view. This will

ignore history, but allows future comparisons

with other solutions at also primary operation

on recent data.

3 Implementation

We will discuss different implementations in or-

der to come from data to the user and back.

Thus we need implement an importing appli-

cation, the API used by OSM editors and tools

and an interface to a render machine so we are

able to generate maps.

1

3.1 osmparser

In order to import pseudo-GIS data into a

database some solutions are available from the

OSM community. Popular ones are osm2pgsql

and osmosis, the first is a perl script to convert

OSM to PostGIS, the second a java implementa-

tion, as Swiss army knife for conversion. Both of

them can do streaming operations, thus do not

require the extra diskspace required for decom-

pression.

With enough space available it seems that the

overhead of parsing and decompression at the

same time could be avoided. Our parser is build

around a memory mapped planet file that is

raw parsed using a tokenisation based state ma-

chine. We produce separate files having comma

separated values for each table. This results

in a set of commands to import these files into

mclient as one transaction using copy into.

We have noticed that the enforcement of se-

quences, primary and foreign keys significantly

influences the memory requirements for the im-

port task. Secondary, the current planet has ref-

erential integrity problems, due to the chosen

generation. Direct enforcement of foreign key

constraints would fail the import. After the im-

port the integrity must be checked in order to

find violations and purge them so we can alter

the table to add constraints and allow normal

operation.

3.2 handler_osm

The Cherokee webserver is a high performance,

high availability webserver platform in C build

around a plugin based infrastructure. Next to

common interface to CGI-like protocols it al-

lows a developer to incorporate a module in-

side the Cherokee core hand have the webserver

to dispatch a request to a specific plugin, or in

slang, handler.

The general plugin is implemented having at

least:

• configure method, upon creation configu-

ration parameters and handler wide vari-

ables are initialised in this function.

• props_free method, is set by the configure

function to clean up the variables after un-

loading.

• new method, is called upon using the han-

dler for a new request.

• free method, is requested for cleanup after

a request.

• init method, when a new request comes in

it is processed within this function.

• add_headers method, based on the inter-

nal representation of the content in the con-

tent buffer a header should be set, common

properties as content-type are set here.

• step method, the webserver copies a buffer

from a specific length from the handler

to the requester until the entire buffer is

empty, or the connection is terminated.

We configure the webserver in read/write,for

updates to the dataset, or read-only mode, as

data query apparatus.

3.2.1 Connection Pool

To reduce the overhead of the client access layer

to database, we have implemented a connection

pool. Per request it saves up to 1 second over

normal per request started connections, thus in-

creases the throughput in a webservice.

The pool is implemented as thread-safe

linked list, and has a fixed percentage of over-

head connections, that is dynamically main-

tained to reduce the chance of a client to wait

for the connection setup. Upon free, the cur-

rent amount of free connections is evaluated, if

at that moment in time it exceeds the overhead,

that connection is freed.

3.2.2 Operations

In order to do a comparison between the cur-

rent production API in Ruby on Rails with

2

MySQL and handler_osm as Cherokee exten-

sion in C using MonetDB5, API0.5 had to be im-

plemented. We have ignored the user manage-

ment, GPX (pointclouds) and history part. We

did implemented the additional XAPI that al-

lows users too query the database in a pseudo

XPath-attribute selection style.

Commonly used queries;

• GET map by boundingbox. The core busi-

ness of OSM returns vector data, currently

all data present in the database filtered

within a rectangle. Since OSM data is ran-

domly added, the performance on this re-

trieval code, solely depends on clever in-

dexing. This might be the only query

within OSM that could justify spatial ex-

tensions, since it is operating on the funda-

mental level of the data model that is map-

ping points to nodes.

• GET object (full). Each object can be fetched

using the REST based API based on their

ID. While the current production API only

partly enforces referential integrity, rela-

tions in database sense, foreign keys are

heavily used to map nodes to ways, and

join different objects to one big relation.

The full modifier will return all objects that

are referenced within one output.

• PUT object by ID. The update and creation

mechanism lives by lives over three tables

with each having their own sequence.

3.3 Mapserver

Mapserver is a GIS render platform that makes

extensive use of GDAL/OGR to interface with

different GIS formats. We have extended the

OGR virtual tables to allow linestrings to be

generated from the OSM tables without specific

geodatatypes, next to the already supported

points. The geodatatypes are on the fly created

using OGR. We have interfaced with OGR using

the MonetDB ODBC connection.

4 Results

Our benchmarks were done with the CVS ver-

sion of MonetDB5 (Dec 2008) using the new de-

fault Algebra code having debug and asserts.

The system was an AMDX2 5200+, 8GB RAM

running Linux 2.6.27. The dataset used that

represented The Netherlands, and used around

1.8GB of memory for memory mapping the ta-

bles. The database server for the full dataset

located in London is equipped with an identi-

cal CPU/Memory configuration, but balances

its MyISAM and InnoDB tables over different

harddrives. Opposed to our test that is lim-

ited to a single harddrive and could only be in-

creased in throughput using a RAID configura-

tion or logical mapping of diskspace. Since The

Netherlands dataset is smaller than the total

amount of memory available, the task we com-

pare is only limited to the CPU. This measures

the performance of the algorithms opposed to

a complete dataset that could pose other bottle-

necks such as storage disk speed.

4.1 Import

The conversion of 1.4GB worth of XML data to

CSV using one harddrive for the read opera-

tions and one harddriver for the final files took:

real 48.800s

user 40.731s

sys 3.252s

The import task was done on a tableset that

did not enforce foreign or primary keys, this re-

duces the amount overhead due to constraint

tracking and secondly will give better chances

to successfully loaded. Left the server re-

source usage right the mclient usage. In total

27456818 rows over 10 tables where copied into

the database.

real 1m48.891s real 1m44.425s

user 2m11.940s user 0m0.008s

sys 0m4.700s sys 0m0.000s

3

4.2 Integrity

The current planet export files in XML lack the

referential integrity or the strict enforcement of

tag key uniqueness we try to achieve. This

forces us to import our database constraintless

and find the violators manually. For this task

we have compared:

SELECT DISTINCT relation
FROM relation_members_way
WHERE to_way NOT IN

(SELECT id FROM ways);

SELECT DISTINCT
relation_members_way.relation

FROM relation_members_way
LEFT JOIN ways ON

relation_members_way.to_way = ways.id
WHERE ways.id IS NULL;

The execution times of both queries after sev-

eral runs results in:

best (nc) 172.693ms 160.851ms

best (c) 182.898ms 18.816ms

The query has no output.

4.3 Bounding Box retrieval

The most used queries within OpenStreetMap

fetch a specific area from the data set. We com-

pare different SQL queries and datatypes for

this task. In principle it can be denoted as:

lat BETWEEN y1 AND y2 AND
long BETWEEN x1 AND x2

We compare the area it is spanning plus the re-

sult count and relate this to the time it takes. We

make a comparison between integer and dou-

bles. GIS point tests resulted in full table scans,

and took far more time for each SELECT than

any other format. Our test took generated ran-

dom bounding boxes withing the bounding box

of The Netherlands, and summed the results us-

ing count(*). This resulted in the following scat-

ter plots with on the Y-axis the time in millisec-

onds and on the X-axis the surface.

The output of doubles performs worse over

larger areas; because we didn’t show the

amount of results found in each query it is not

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12

"test" using 1:3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2e+14 4e+14 6e+14 8e+14 1e+15 1.2e+15 1.4e+15

"test-uint" using 1:3

directly comparable but does show the reader it

might be worth investigating unsigned integers

further, while it does not outperform doubles by

significant numbers.

4.4 Lookup

The lookup of tags (related to objects), ways

within a bounding box (related to nodes) is

compared for performance differences in re-

cycling subqueries using IN by comparing

(EQUI)JOIN, LEFT JOIN and IN.

Our test will simulate an XAPI request for a

specific tag pair to look up a street name.

SELECT count(*) FROM ways, way_tags
WHERE

ways.id = way_tags.way AND
k = ’name’ AND
v = ’Oude Trambaan’;

SELECT count(*) FROM ways
LEFT JOIN way_tags ON

ways.id = way_tags.way
WHERE

k = ’name’ AND
v = ’Oude Trambaan’;

4

SELECT count(*) FROM ways
WHERE id IN (
SELECT way FROM way_tags
WHERE

k = ’name’ AND
v = ’Oude Trambaan’);

best (nc) 1.660ms 7999.047ms 1.766ms

best (c) 2.392ms ERROR 1.735ms

This specific results show that the performance

for IN with a relatively low amount of tuples

(42) is still comparable to JOIN. We describe the

error in the non-constrained version in the dis-

cussion of this essay.

The {highway, secondary} key/value-pair

represent 108992 tuples which results in the fol-

lowing latency:

best (nc) 240.106ms 7567.258ms 319.194ms

best (c) 113.410ms ERROR 329.635ms

A decrease in IN performance over a normal

JOIN is observed. Which could give us a hint

about the amount of tuples it is still worth to

cache results. Finally we will compare both keys

together.

SELECT count(*) FROM ways,
way_tags AS w1,
way_tags AS w2

WHERE
ways.id = w1.way AND
ways.id = w2.way AND
w1.k = ’highway’ AND
w1.v = ’secondary’ AND
w2.k = ’name’ AND
w2.v = ’Oude Trambaan’;

SELECT count(*) FROM (
SELECT id FROM ways
LEFT JOIN way_tags ON

ways.id = way_tags.way
WHERE

k = ’highway’ AND
v = ’secondary’

) AS q1
LEFT JOIN way_tags ON

q1.id = way_tags.way
WHERE

k = ’name’ AND
v = ’Oude Trambaan’;

SELECT count(*) FROM ways
WHERE id IN (

SELECT way FROM way_tags
WHERE k = ’highway’ AND
v = ’secondary’ AND
way IN (

SELECT way FROM way_tags
WHERE k = ’name’ AND
v = ’Oude Trambaan’

)
);

best (nc) 242.235ms 8521.733ms 101.336ms

best (c) 135.907ms ERROR 108.973ms

In the more complex scenario something inter-

esting going on using the nested IN; when the

order is chosen right heuristically the query is

able to output perform a standard JOIN. For

this query worst case scenario where both are

flipped 181.766ms is achieved.

5 Discussion

In preliminary tests we have experimented with

MonetDB4 and XQuery on the dataset. The

usability of the system, even at the XQuery

commandline was bad. In order for the sys-

tem to work a 200% overhead of diskspace was

needed, and search times measured where far

higher than the current ‘official’ OSM imple-

mentation. It seems to be clear that structured

data can be stored in many ways, and it is up to

the database system to choose the appropriate

form. MonetDB4, at the time of writing, does

not exploit DTDs or XSDs to enhance the disk

format or increase the lookup performance. The

idea of just serving subtrees of a document us-

ing an XQuery interface seems, from a esthetic

point of view, a good idea, sadly its implemen-

tation seems to be the main bottleneck.

OpenStreetMap development is doing a fairly

good job in inventing solutions that will break

the fundamental SQL92 principles. The visible

attribute on the ‘current’ table might be the best

example of overengineering at the sacrifice SQL

features. The scope of the attribute is to be able

5

to mark an object as ‘deleted’. Since this does

not enforce foreign key violations, opposed to

a real DELETE, thus undermines the methods

that where put in SQL92 to overcome integrity

issues. The solution that is solved there has

to do with the lack of another feature in SQL,

transaction management over time. To allow

to browse the history, a perfect DBMS for OSM

should implement look ups based on time. It

would implement a journal, like in many copy-

on-write filesystems is present, to go back to an

older write state.

The importing mechanism described as osm-

parser was used on many systems, it be-

came clear that when MonetDB5 was used the

amount of memory required to successfully im-

port the full Planet had to be extended in all

cases to virtual memory. The biggest system,

an 8 way Xeon with 32GB of memory, also

used in the MonetDB4 task, also ran into out-of-

memory elimination. It is questionable if this in

an optimal scenario is required, or better if a re-

duction of consumed memory could not lead to

a better throughput. Nevertheless should Mon-

etDB facilitate its own needs by memory map-

ping opposed to memory allocation.

Other improvements that would benefit the

OSM dataset are the reuse of query results

within a query, or even within a transaction.

In the actual implementation of the API we

have implemented a query series that stores

and reuses results (using the earlier described

IN method) opposed to queries that execute a

deeper query again. For smaller results the IN

method is beneficial as seen from the results.

Even heuristically speaking IN outperforms a

normal JOIN when the sets are small enough.

A database application must be able to trust the

database engine that optimal strategies are cho-

sen. This is currently not the case. Therefore our

application is unable to optimise to MonetDB

from a standpoint that all sizes perform linear.

After adding our constraints the LEFT JOIN

operation broke; when trying to verify the ac-

tual results the foreign key index broke, and an-

other bug was discovered.

6 Further Work

We have not done a direct comparison between

two large datasets. Or done any end to end

comparisons or benchmarks under load over

our API, opposed to the Ruby on Rails API. This

is an area to be explored in a later essay. An

open issue is the current area creation in a vir-

tual table. We have created code for support-

ing area from resultsets, but the actual render-

ing did not succeed.

Cherokee implements its own version of DB-

Slayer, currently only MySQL is supported. It

must be possible to add a native MAPI interface

to this handler to allow loadbalancing using the

Cherokee balancer infrastructure.

7 Conclusion

MonetDB is clearly capable in handling large

amounts of data if sufficient hardware is thrown

to the task. MonetDB is experimental, and has

areas that we would like to use such as ‘geom’

but are not ready for large usage due to memory

leaks. Since that is rather a technical malfunc-

tion opposed to a design flaw the future might

show that storage of geotables could actually be

an attractive and painless operation.

8 References

http://monetdb.org/
http://wiki.openstreetmap.org/
wiki/WMS_Server
http://wiki.openstreetmap.org/
wiki/Cherokee/MonetDB_Handler_OSM
http://code.nytimes.com/projects/
dbslayer
http://cherokee-project.com/
http://gdal.org/

6

